GAMS Index for the NAG Fortran 77 Library

This index classifies NAG Fortran 77 Library routines according to Version 2 of the GAMS classification scheme described in [1]. Note that only those GAMS classes which contain Library routines, either directly or in a subclass, are included below.

```
Arithmetic, error analysis
\mathbf{A3}
              Real
                 Standard precision
A3a
                                        Compute quotient of two real scalars, with overflow flag
                             F06BLF
              Complex
A4
A4a
                 Standard precision
                                        Modulus of complex number
                             A02ABF
                             A02ACF
                                        Quotient of two complex numbers
                             F06CLF
                                         Compute quotient of two complex scalars, with overflow flag
A7
              Sequences (e.g., convergence acceleration)
                             CO6BAF
                                         Acceleration of convergence of sequence, Shanks' transformation and epsilon
                                        algorithm
\mathbf{C}
            Elementary and special functions (search also class L5)
              Integer-valued functions (e.g., factorial, binomial coefficient, permutations, combinations, floor, ceiling)
C1
C2
              Powers, roots, reciprocals
                                        Square root of complex number
                             A02AAF
C3
              Polynomials
C<sub>3</sub>a
                 Orthogonal
                   Chebyshev, Legendre
C3a2
                             CO6DBF
                                        Sum of a Chebyshev series
                             E02AEF
                                        Evaluation of fitted polynomial in one variable from Chebyshev series form
                                         (simplified parameter list)
                             E02AHF
                                        Derivative of fitted polynomial in Chebyshev series form
                             E02AJF
                                        Integral of fitted polynomial in Chebyshev series form
                             E02AKF
                                        Evaluation of fitted polynomial in one variable from Chebyshev series form
C4
               Elementary transcendental functions
                 Trigonometric, inverse trigonometric
C<sub>4</sub>a
                             F06BCF
                                        Recover cosine and sine from given real tangent
                             F06CCF
                                        Recover cosine and sine from given complex tangent, real cosine
                             F06CDF
                                        Recover cosine and sine from given complex tangent, real sine
                             S07AAF
                             S09AAF
                                        \arcsin x
                             S09ABF
                                        \arccos x
                 Exponential, logarithmic
C<sub>4</sub>b
                             S01BAF
                                        \ln(1+x)
                             S01EAF
                                        Complex exponential, e^z
                 Hyperbolic, inverse hyperbolic
C4c
                             S10AAF
                                        \tanh x
                             S10ABF
                                        \sinh x
                             S10ACF
                                        \cosh x
                             S11AAF
                                        arctanhx
                             S11ABF
                                        \operatorname{arcsinh} x
                             S11ACF
                                        \operatorname{arccosh} x
              Exponential and logarithmic integrals
C5
                             S13AAF
                                         Exponential integral E_1(x)
              Cosine and sine integrals
C6
                                         Cosine integral Ci(x)
                             S13ACF
                             S13ADF
                                        Sine integral Si(x)
C7
              Gamma.
C7a
                 Gamma, log gamma, reciprocal gamma
                                        Gamma function
                             S14AAF
                                        Log Gamma function
                             S14ABF
C7c
                 Psi function
                             S14ACF
                             S14ADF
                                        Scaled derivatives of \psi(x)
                 Incomplete gamma
C7e
                             S14BAF
                                        Incomplete Gamma functions P(a, x) and Q(a, x)
C8
               Error functions
                 Error functions, their inverses, integrals, including the normal distribution function
C8a
                             S15ABF
                                        Cumulative normal distribution function P(x)
                             S15ACF
                                        Complement of cumulative normal distribution function Q(x)
                             S15ADF
                                        Complement of error function \operatorname{erfc}(x)
                             S15AEF
                                        Error function erf(x)
                                        Scaled complex complement of error function, \exp(-z^2)\operatorname{erfc}(-iz)
                             S15DDF
```

GAMS Index

Index

```
C8b
                 Fresnel integrals
                            S20ACF
                                        Fresnel integral S(x)
                            S20ADF
                                        Fresnel integral C(x)
C8c
                 Dawson's integral
                            S15AFF
                                        Dawson's integral
C10
               Bessel functions
C<sub>10</sub>a
                 J, Y, H_1, H_2
C10a1
                   Real argument, integer order
                                        Bessel function Y_0(x)
                            S17ACF
                            S17ADF
                                        Bessel function Y_1(x)
                            S17AEF
                                        Bessel function J_0(x)
                            S17AFF
                                        Bessel function J_1(x)
                                       real order
                   Complex argument,
C10a4
                            S17DCF
                                        Bessel functions Y_{\nu+a}(z), real a \ge 0, complex z, \nu = 0, 1, 2, \dots
                            S17DEF
                                        Bessel functions J_{\nu+a}(z), real a \geq 0, complex z, \nu = 0, 1, 2, \dots
                                        Hankel functions H_{\nu+a}^{(j)}(z), j=1,2, real a\geq 0, complex z, \nu=0,1,2,\ldots
                            S17DLF
                 I, K
C10b
                   Real argument, integer order
C10b1
                            S18ACF
                                        Modified Bessel function K_0(x)
                            S18ADF
                                        Modified Bessel function K_1(x)
                            S18AEF
                                        Modified Bessel function I_0(x)
                            S18AFF
                                        Modified Bessel function I_1(x)
                            S18CCF
                                        Modified Bessel function e^x K_0(x)
                                        Modified Bessel function e^x K_1(x)
                            S18CDF
                                        Modified Bessel function e^{-|x|}I_0(x)
                            S18CEF
                                        Modified Bessel function e^{-|x|}I_1(x)
                            S18CFF
C10b4
                   Complex argument,
                                        real order
                                        Modified Bessel functions K_{\nu+a}(z), real a \geq 0, complex z, \nu = 0, 1, 2, ...
                            S18DCF
                                        Modified Bessel functions I_{\nu+a}(z), real a \geq 0, complex z, \nu = 0, 1, 2, \dots
                            S18DEF
C10c
                 Kelvin functions
                            S19AAF
                                        Kelvin function ber x
                            S19ABF
                                        Kelvin function bei x
                            S19ACF
                                        Kelvin function ker x
                            S19ADF
                                        Kelvin function kei x
C10d
                 Airy and Scorer functions
                            S17AGF
                                        Airy function Ai(x)
                                        Airy function Bi(x)
                            S17AHF
                            S17AJF
                                        Airy function Ai'(x)
                            S17AKF
                                        Airy function Bi'(x)
                            S17DGF
                                        Airy functions Ai(z) and Ai'(z), complex z
                            S17DHF
                                        Airy functions Bi(z) and Bi'(z), complex z
C13
              Jacobian elliptic functions, theta functions
                            S21CAF
                                        Jacobian elliptic functions sn, cn and dn
C14
              Elliptic integrals
                            S21BAF
                                        Degenerate symmetrised elliptic integral of 1st kind R_C(x,y)
                            S21BBF
                                        Symmetrised elliptic integral of 1st kind R_F(x, y, z)
                            S21BCF
                                        Symmetrised elliptic integral of 2nd kind R_D(x, y, z)
                            S21BDF
                                        Symmetrised elliptic integral of 3rd kind R_J(x, y, z, r)
\mathbf{D}
            Linear Algebra
D1
              Elementary vector and matrix operations
D1a
                 Elementary vector operations
D1a1
                   Set to constant
                            F06DBF
                                        Broadcast scalar into integer vector
                            F06EVF
                                        (SGTHRZ/DGTHRZ) Gather and set to zero real sparse vector
                            F06FBF
                                        Broadcast scalar into real vector
                                        (CGTHRZ/ZGTHRZ) Gather and set to zero complex sparse vector
                            F06GVF
                            F06HBF
                                        Broadcast scalar into complex vector
                   Minimum and maximum components
D1a2
                            F06FLF
                                        Elements of real vector with largest and smallest absolute value
                            F06JLF
                                        (ISAMAX/IDAMAX) Index, real vector element with largest absolute value
                            F06JMF
                                        (ICAMAX/IZAMAX) Index, complex vector element with largest absolute value
                            F06KLF
                                        Last non-negligible element of real vector
                   Norm
D1a3
                     L_1 (sum of magnitudes)
D1a3a
                            F06EKF
                                        (SASUM/DASUM) Sum absolute values of real vector elements
                                        (SCASUM/DZASUM) Sum absolute values of complex vector elements
D1a3b
                     L_2 (Euclidean norm)
                            F06BMF
                                        Compute Euclidean norm from scaled form
                                        Compute square root of (a^2 + b^2), real a and b
                            F06BNF
                                        (SNRM2/DNRM2) Compute Euclidean norm of real vector
                            F06EJF
                            F06FJF
                                        Update Euclidean norm of real vector in scaled form
```

GAMS.2 [NP3445/2/pdf]

	F06FKF	Compute weighted Euclidean norm of real vector
	F06JJF F06KJF	(SCNRM2/DZNRM2) Compute Euclidean norm of complex vector Update Euclidean norm of complex vector in scaled form
D1a3c	L_{∞} (maximum	
	F06FLF	Elements of real vector with largest and smallest absolute value
	F06JLF F06JMF	(ISAMAX/IDAMAX) Index, real vector element with largest absolute value (ICAMAX/IZAMAX) Index, complex vector element with largest absolute value
D1a4	Dot product (inne	, , , -
	F06EAF	(SDOT/DDOT) Dot product of two real vectors
	F06ERF	(SDOTI/DDOTI) Dot product of two real sparse vectors
	F06GAF F06GBF	(CDOTU/ZDOTU) Dot product of two complex vectors, unconjugated (CDOTC/ZDOTC) Dot product of two complex vectors, conjugated
	F06GRF	(CDOTUI/ZDOTUI) Dot product of two complex sparse vector, unconjugated
	F06GSF	(CDOTCI/ZDOTCI) Dot product of two complex sparse vector, conjugated
	XO3AAF	Real inner product added to initial value, basic/additional precision
D1a5	X03ABF Copy or exchange	Complex inner product added to initial value, basic/additional precision (swap)
Dias	F06DFF	Copy integer vector
	F06EFF	(SCOPY/DCOPY) Copy real vector
	F06EGF	(SSWAP/DSWAP) Swap two real vectors
	F06GFF F06GGF	(CCOPY/ZCOPY) Copy complex vector (CSWAP/ZSWAP) Swap two complex vectors
	F06KFF	Copy real vector to complex vector
D1a6	Multiplication by	
	F06EDF F06FDF	(SSCAL/DSCAL) Multiply real vector by scalar Multiply real vector by scalar, preserving input vector
	F06FGF	Negate real vector
	F06GDF	(CSCAL/ZSCAL) Multiply complex vector by complex scalar
	F06HDF	Multiply complex vector by complex scalar, preserving input vector
	F06HGF F06JDF	Negate complex vector (CSSCAL/ZDSCAL) Multiply complex vector by real scalar
	F06KDF	Multiply complex vector by real scalar, preserving input vector
D1a7	,	vectors x , y and scalar α)
	F06ECF F06ETF	(SAXPY/DAXPY) Add scalar times real vector to real vector (SAXPYI/DAXPYI) Add scalar times real sparse vector to real sparse vector
	F06GCF	(CAXPY/ZAXPY) Add scalar times complex vector to complex vector
	F06GTF	(CAXPYI/ZAXPYI) Add scalar times complex sparse vector to complex sparse
D1 0	[7]	vector
D1a8	F06AAF	on (Givens transformation) (SROTG/DROTG) Generate real plane rotation
	F06BAF	Generate real plane rotation, storing tangent
	F06BEF	Generate real Jacobi plane rotation
	F06BHF F06CAF	Apply real similarity rotation to 2 by 2 symmetric matrix Generate complex plane rotation, storing tangent, real cosine
	F06CBF	Generate complex plane rotation, storing tangent, real sine
	F06CHF	Apply complex similarity rotation to 2 by 2 Hermitian matrix
	F06EPF	(SROT/DROT) Apply real plane rotation
	F06EXF F06FPF	(SROTI/DROTI) Apply plane rotation to two real sparse vectors Apply real symmetric plane rotation to two vectors
	F06FQF	Generate sequence of real plane rotations
	F06HPF	Apply complex plane rotation
	F06HQF F06KPF	Generate sequence of complex plane rotations Apply real plane rotation to two complex vectors
D1a9		ion (Householder transformation)
	F06FRF	Generate real elementary reflection, NAG style
	F06FSF	Generate real elementary reflection, LINPACK style
	F06FTF F06FUF	Apply real elementary reflection, NAG style Apply real elementary reflection, LINPACK style
	F06HRF	Generate complex elementary reflection
	F06HTF	Apply complex elementary reflection
D1a10	Convolutions C06EKF	Circular convolution or correlation of two real vectors, no extra workspace
	CO6FKF	Circular convolution or correlation of two real vectors, no extra workspace for greater
		speed
	CO6PKF	Circular convolution or correlation of two complex vectors
D1a11	CO6PKF Other vector opera	Circular convolution or correlation of two complex vectors
	F06EUF	(SGTHR/DGTHR) Gather real sparse vector
	F06EVF	(SGTHRZ/DGTHRZ) Gather and set to zero real sparse vector
	FO6EWF FO6FAF	(SSCTR/DSCTR) Scatter real sparse vector Compute cosine of angle between two real vectors
	FOOTAL	Compare cosme of angle between two real vectors

	F06GUF	(CGTHR/ZGTHR) Gather complex sparse vector
	F06GVF	(CGTHRZ/ZGTHRZ) Gather and set to zero complex sparse vector
	F06GWF F06KLF	(CSCTR/ZSCTR) Scatter complex sparse vector Last non-negligible element of real vector
D1b	Elementary matrix of	
DID	F06QJF	Permute rows or columns, real rectangular matrix, permutations represented by an
		integer array
	F06QKF	Permute rows or columns, real rectangular matrix, permutations represented by a
	F06VJF	real array Permute rows or columns, complex rectangular matrix, permutations represented
	100431	by an integer array
	F06VKF	Permute rows or columns, complex rectangular matrix, permutations represented
	T 1. /	by a real array
D1b1	Initialize (e.g., to z FO6QHF	• /
	F06THF	Matrix initialisation, real rectangular matrix Matrix initialisation, complex rectangular matrix
D1b2	Norm	
	F04YCF	Norm estimation (for use in condition estimation), real matrix
	F04ZCF	Norm estimation (for use in condition estimation), complex matrix
	FOGRAF	1-norm, ∞-norm, Frobenius norm, largest absolute element, real general matrix
	F06RBF F06RCF	1-norm, ∞-norm, Frobenius norm, largest absolute element, real band matrix 1-norm, ∞-norm, Frobenius norm, largest absolute element, real symmetric matrix
	F06RDF	1-norm, ∞-norm, Frobenius norm, largest absolute element, real symmetric matrix,
		packed storage
	F06REF	1-norm, ∞-norm, Frobenius norm, largest absolute element, real symmetric band matrix
	F06RJF	1-norm, ∞ -norm, Frobenius norm, largest absolute element, real trapezoidal/triangular matrix
	F06RKF	1-norm, ∞-norm, Frobenius norm, largest absolute element, real triangular matrix,
		packed storage
	F06RLF	1-norm, ∞-norm, Frobenius norm, largest absolute element, real triangular band matrix
	F06RMF	1-norm, ∞-norm, Frobenius norm, largest absolute element, real Hessenberg matrix
	F06UAF	1-norm, ∞-norm, Frobenius norm, largest absolute element, complex general matrix
	F06UBF F06UCF	1-norm, ∞-norm, Frobenius norm, largest absolute element, complex band matrix 1-norm, ∞-norm, Frobenius norm, largest absolute element, complex Hermitian
	100001	matrix
	F06UDF	1-norm, ∞-norm, Frobenius norm, largest absolute element, complex Hermitian matrix, packed storage
	F06UEF	1-norm, ∞-norm, Frobenius norm, largest absolute element, complex Hermitian band matrix
	F06UFF	1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex symmetric
	F06UGF	matrix 1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex symmetric
		matrix, packed storage
	F06UHF	1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex symmetric band matrix
	F06UJF	1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex trapezoidal/triangular matrix
	F06UKF	1-norm, ∞-norm, Frobenius norm, largest absolute element, complex triangular matrix, packed storage
	F06ULF	1-norm, ∞-norm, Frobenius norm, largest absolute element, complex triangular
		band matrix
	F06UMF	1-norm, ∞-norm, Frobenius norm, largest absolute element, complex Hessenberg matrix
D1b3	Transpose	matrix
	F01CRF	Matrix transposition
	F01CTF	Sum or difference of two real matrices, optional scaling and transposition
D1b4	F01CWF Multiplication by v	Sum or difference of two complex matrices, optional scaling and transposition
D104	F06HCF	Multiply complex vector by complex diagonal matrix
	F06KCF	Multiply complex vector by real diagonal matrix
	FO6PAF	(SGEMV/DGEMV) Matrix-vector product, real rectangular matrix
	F06PBF	(SGBMV/DGBMV) Matrix-vector product, real rectangular band matrix (SSYMV/DSYMV) Matrix-vector product, real symmetric matrix
	F06PCF F06PDF	(SSBMV/DSBMV) Matrix-vector product, real symmetric matrix (SSBMV/DSBMV) Matrix-vector product, real symmetric band matrix
	F06PEF	(SSPMV/DSPMV) Matrix-vector product, real symmetric packed matrix
	F06PFF	(STRMV/DTRMV) Matrix-vector product, real triangular matrix
	F06PGF	(STBMV/DTBMV) Matrix-vector product, real triangular band matrix
	F06PHF	(STPMV/DTPMV) Matrix-vector product, real triangular packed matrix
	F06SAF F06SBF	(CGEMV/ZGEMV) Matrix-vector product, complex rectangular matrix (CGBMV/ZGBMV) Matrix-vector product, complex rectangular band matrix
	100001	(/ _ = = / - / - / / / / / / / / / / / - / / / / / / / / / / / - / / / / / / / / / / / - / / / / / / / / / / / -

GAMS.4 [NP3445/2/pdf]

	FOCAGE	(CHEMA/ZHEMA) Matrice and an all the second and the
	F06SCF	(CHEMV/ZHEMV) Matrix-vector product, complex Hermitian matrix
	F06SDF	(CHBMV/ZHBMV) Matrix-vector product, complex Hermitian band matrix (CHPMV/ZHPMV) Matrix-vector product, complex Hermitian packed matrix
	F06SEF	
	F06SFF	(CTRMV/ZTRMV) Matrix-vector product, complex triangular matrix (CTBMV/ZTBMV) Matrix-vector product, complex triangular band matrix
	F06SGF	(CTPMV/ZTPMV) Matrix-vector product, complex triangular band matrix (CTPMV/ZTPMV) Matrix-vector product, complex triangular packed matrix
	F06SHF F11DKF	Real sparse nonsymmetric linear systems, line Jacobi preconditioner
	F11XAF	Real sparse nonsymmetric matrix vector multiply
	F11XEF	Real sparse symmetric matrix vector multiply
	F11XNF	Complex sparse non-Hermitian matrix vector multiply Complex sparse Hermitian matrix vector multiply
Dile	F11XSF	1 1 V
D1b5	Addition, subtracti	on Sum or difference of two real matrices, optional scaling and transposition
	F01CTF	Sum or difference of two complex matrices, optional scaling and transposition
	F01CWF F06PMF	(SGER/DGER) Rank-1 update, real rectangular matrix
	F06PPF F06PQF	(SSYR/DSYR) Rank-1 update, real symmetric matrix (SSPR/DSPR) Rank-1 update, real symmetric packed matrix
	F06PRF	(SSYR2/DSYR2) Rank-2 update, real symmetric matrix
		• • • • • • • • • • • • • • • • • • • •
	F06PSF	(SSPR2/DSPR2) Rank-2 update, real symmetric packed matrix (CGERU/ZGERU) Rank-1 update, complex rectangular matrix, unconjugated
	F06SMF	vector vector
	F06SNF	(CGERC/ZGERC) Rank-1 update, complex rectangular matrix, conjugated vector
	F06SPF	(CHER/ZHER) Rank-1 update, complex rectangular matrix, conjugated vector (CHER/ZHER) Rank-1 update, complex Hermitian matrix
	F06SQF	(CHPR/ZHPR) Rank-1 update, complex Hermitian packed matrix
	F06SRF	(CHER2/ZHER2) Rank-2 update, complex Hermitian matrix
	F06SSF	(CHPR2/ZHPR2) Rank-2 update, complex Hermitian packed matrix
	F06YPF	(SSYRK/DSYRK) Rank-k update of real symmetric matrix
	F06ZPF	(CHERK/ZHERK) Rank-k update of complex Hermitian matrix
	F06ZRF	(CHER2K/ZHER2K) Rank-2k update of complex Hermitian matrix (CSYRK/ZSYRK) Rank-k update of complex symmetric matrix
	F06ZUF F06ZWF	(CSYR2K/ZHER2K) Rank- $2k$ update of complex symmetric matrix
Dile		(CSTR2R/ZITER2R) Rank-2k update of complex symmetric matrix
D1b6	Multiplication F01CKF	Matrix multiplication
	F06FCF	Multiply real vector by diagonal matrix
	F06YAF	(SGEMM/DGEMM) Matrix-matrix product, two real rectangular matrices
	F06YCF	(SSYMM/DSYMM) Matrix-matrix product, two real rectangular matrices
	FOOTOF	rectangular matrix
	F06YFF	(STRMM/DTRMM) Matrix-matrix product, one real triangular matrix, one real
	FOOTF	rectangular matrix
	F06YRF	(SSYR2K/DSYR2K) Rank-2k update of real symmetric matrix
	F06ZAF	(CGEMM/ZGEMM) Matrix-matrix product, two complex rectangular matrices
	F06ZCF	(CHEMM/ZHEMM) Matrix-matrix product, one complex Hermitian matrix, one
	1 00201	complex rectangular matrix
	F06ZFF	(CTRMM/ZTRMM) Matrix-matrix product, one complex triangular matrix, one
	100211	complex rectangular matrix
	F06ZTF	(CSYMM/ZSYMM) Matrix-matrix product, one complex symmetric matrix, one
	100211	complex rectangular matrix
D1b8	Сору	
2100	F06QFF	Matrix copy, real rectangular or trapezoidal matrix
	F06TFF	Matrix copy, complex rectangular or trapezoidal matrix
D1b9	Storage mode conv	
	F01ZAF	Convert real matrix between packed triangular and square storage schemes
	F01ZBF	Convert complex matrix between packed triangular and square storage schemes
	F01ZCF	Convert real matrix between packed banded and rectangular storage schemes
	F01ZDF	Convert complex matrix between packed banded and rectangular storage schemes
	F11ZAF	Real sparse nonsymmetric matrix reorder routine
	F11ZBF	Real sparse symmetric matrix reorder routine
	F11ZPF	Complex sparse Hermitian matrix reorder routine
	F11ZNF	Complex sparse non-Hermitian matrix reorder routine
D1b10	Elementary rotatio	n (Givens transformation)
	F06QMF	Orthogonal similarity transformation of real symmetric matrix as a sequence of
		plane rotations
	F06QVF	Compute upper Hessenberg matrix by sequence of plane rotations, real upper
		triangular matrix
	F06QWF	Compute upper spiked matrix by sequence of plane rotations, real upper triangular
		matrix
	F06QXF	Apply sequence of plane rotations, real rectangular matrix
	F06TMF	Unitary similarity transformation of Hermitian matrix as a sequence of plane
		rotations
	F06TVF	Compute upper Hessenberg matrix by sequence of plane rotations, complex upper
		triangular matrix

		F06TWF	Compute upper spiked matrix by sequence of plane rotations, complex upper
			triangular matrix
		F06TXF	Apply sequence of plane rotations, complex rectangular matrix, real cosine and complex sine
		F06TYF	Apply sequence of plane rotations, complex rectangular matrix, complex cosine and real sine
		F06VXF	Apply sequence of plane rotations, complex rectangular matrix, real cosine and sine
D2	Solution of s		inear equations (including inversion, LU and related decompositions)
D2a		ymmetric m	
D2a1	General	,	
		FO3AFF	LU factorization and determinant of real matrix
		FO4AAF	Solution of real simultaneous linear equations with multiple right-hand sides (Black
			Box)
		F04AEF	Solution of real simultaneous linear equations with multiple right-hand sides using
			iterative refinement (Black Box)
		FO4AHF	Solution of real simultaneous linear equations using iterative refinement (coefficient
			matrix already factorized by F03AFF)
		F04AJF	Solution of real simultaneous linear equations (coefficient matrix already factorized
		E044DE	by F03AFF)
		FO4ARF	Solution of real simultaneous linear equations, one right-hand side (Black Box)
		F04ATF	Solution of real simultaneous linear equations, one right-hand side using iterative
		E07ADE	refinement (Black Box)
		F07ADF F07AEF	(SGETRF/DGETRF) LU factorization of real m by n matrix (SGETRS/DGETRS) Solution of real system of linear equations, multiple right-
		FU/ AEF	hand sides, matrix already factorized by F07ADF
		F07AGF	(SGECON/DGECON) Estimate condition number of real matrix, matrix already
		FO7 AGF	factorized by F07ADF
		F07AHF	(SGERFS/DGERFS) Refined solution with error bounds of real system of linear
		1011111	equations, multiple right-hand sides
		F07AJF	(SGETRI/DGETRI) Inverse of real matrix, matrix already factorized by F07ADF
D2a2	Banded		
2242		F01LHF	LU factorization of real almost block diagonal matrix
		F04LHF	Solution of real almost block diagonal simultaneous linear equations (coefficient
			matrix already factorized by F01LHF)
		F07BDF	(SGBTRF/DGBTRF) LU factorization of real m by n band matrix
		F07BEF	(SGBTRS/DGBTRS) Solution of real band system of linear equations, multiple
			right-hand sides, matrix already factorized by F07BDF
		F07BGF	(SGBCON/DGBCON) Estimate condition number of real band matrix, matrix
			already factorized by F07BDF
		F07BHF	(SGBRFS/DGBRFS) Refined solution with error bounds of real band system of
			linear equations, multiple right-hand sides
		F07VEF	(STBTRS/DTBTRS) Solution of real band triangular system of linear equations,
			multiple right-hand sides
		F07VGF	(STBCON/DTBCON) Estimate condition number of real band triangular matrix
		F07VHF	(STBRFS/DTBRFS) Error bounds for solution of real band triangular system of
D2a2a	Tridia	agonal	linear equations, multiple right-hand sides
Dzaza	Titale	F01LEF	LU factorization of real tridiagonal matrix
		FO4EAF	Solution of real tridiagonal simultaneous linear equations, one right-hand side (Black
			Box)
		F04LEF	Solution of real tridiagonal simultaneous linear equations (coefficient matrix already
			factorized by F01LEF)
D2a3	Triangu		(CERT CALL (TO ETT) CALL)
		F06PJF	(STRSV/DTRSV) System of equations, real triangular matrix
		F06PKF	(STBSV/DTBSV) System of equations, real triangular band matrix
		F06PLF	(STPSV/DTPSV) System of equations, real triangular packed matrix
		F06YJF	(STRSM/DTRSM) Solves system of equations with multiple right-hand sides, real
		D07800	triangular coefficient matrix
		F07TEF	(STRTRS/DTRTRS) Solution of real triangular system of linear equations, multiple right-hand sides
		FOTTCE	(STRCON/DTRCON) Estimate condition number of real triangular matrix
		F07TGF F07THF	(STRRFS/DTRRFS) Error bounds for solution of real triangular system of linear
		1011111	equations, multiple right-hand sides
		F07TJF	(STRTRI/DTRTRI) Inverse of real triangular matrix
		F07UEF	(STPTRS/DTPTRS) Solution of real triangular system of linear equations, multiple
			right-hand sides, packed storage
		F07UGF	(STPCON/DTPCON) Estimate condition number of real triangular matrix, packed
			storage
		F07UHF	(STPRFS/DTPRFS) Error bounds for solution of real triangular system of linear
			equations, multiple right-hand sides, packed storage
		F07UJF	(STPTRI/DTPTRI) Inverse of real triangular matrix, packed storage

GAMS.6 [NP3445/2/pdf]

	F07VEF	(STBTRS/DTBTRS) Solution of real band triangular system of linear equations,
		multiple right-hand sides
	F07VGF	(STBCON/DTBCON) Estimate condition number of real band triangular matrix
	F07VHF	(STBRFS/DTBRFS) Error bounds for solution of real band triangular system of
D204	Sparse	linear equations, multiple right-hand sides
D2a4	F01BRF	LU factorization of real sparse matrix
	F01BSF	LU factorization of real sparse matrix with known sparsity pattern
	F04AXF	Solution of real sparse simultaneous linear equations (coefficient matrix already
		factorized)
	F04QAF	Sparse linear least-squares problem, m real equations in n unknowns
	F11BAF	Real sparse nonsymmetric linear systems, set-up for F11BBF
	F11BBF	Real sparse nonsymmetric linear systems, preconditioned RGMRES, CGS or Bi-
	F11BCF	CGSTAB Real sparse nonsymmetric linear systems, diagnostic for F11BBF
	F11BDF	Real sparse nonsymmetric linear systems, set-up for F11BEF
	F11BEF	Real sparse nonsymmetric linear systems, preconditioned RGMRES, CGS, Bi-
		CGSTAB or TFQMR method
	F11BFF	Real sparse nonsymmetric linear systems, diagnostic for F11BEF
	F11BRF	Complex sparse non-Hermitian linear systems, set-up for F11BSF
	F11BSF	Complex sparse non-Hermitian linear systems, preconditioned RGMRES, CGS, Bi-
	E4.4 DTE	CGSTAB or TFQMR method
	F11BTF F11DAF	Complex sparse non-Hermitian linear systems, diagnostic for F11BSF Real sparse nonsymmetric linear systems, incomplete LU factorization
	F11DBF	Solution of linear system involving incomplete LU preconditioning matrix generated
	111221	by F11DAF
	F11DCF	Solution of real sparse nonsymmetric linear system, RGMRES, CGS or Bi-CGSTAB
		method, preconditioner computed by F11DAF (Black Box)
	F11DDF	Solution of linear system involving preconditioning matrix generated by applying
	F11DEF	SSOR to real sparse nonsymmetric matrix Solution of real sparse nonsymmetric linear system, RGMRES, CGS or Bi-CGSTAB
	FIIDEF	method, Jacobi or SSOR preconditioner (Black Box)
D2b	Real symmetric matri	- ,
D2b1	General	
D2b1a	Indefinite	(227,177,77,177,177,177,177,177,177,177,1
	F07MDF	(SSYTRF/DSYTRF) Bunch–Kaufman factorization of real symmetric indefinite
	FO7MEF	matrix (SSYTRS/DSYTRS) Solution of real symmetric indefinite system of linear equa-
	TOTTILL	tions, multiple right-hand sides, matrix already factorized by F07MDF
	F07MGF	(SSYCON/DSYCON) Estimate condition number of real symmetric indefinite
		matrix, matrix already factorized by F07MDF
	F07MHF	(SSYRFS/DSYRFS) Refined solution with error bounds of real symmetric indefinite
	POZN IP	system of linear equations, multiple right-hand sides
	F07MJF	(SSYTRI/DSYTRI) Inverse of real symmetric indefinite matrix, matrix already factorized by F07MDF
	F07PDF	(SSPTRF/DSPTRF) Bunch–Kaufman factorization of real symmetric indefinite
		matrix, packed storage
	F07PEF	(SSPTRS/DSPTRS) Solution of real symmetric indefinite system of linear equa-
		tions, multiple right-hand sides, matrix already factorized by F07PDF, packed
	F07PGF	storage (SSPCON/DSPCON) Estimate condition number of real symmetric indefinite
	rorrar	matrix, matrix already factorized by F07PDF, packed storage
	F07PHF	(SSPRFS/DSPRFS) Refined solution with error bounds of real symmetric indefinite
		system of linear equations, multiple right-hand sides, packed storage
	F07PJF	(SSPTRI/DSPTRI) Inverse of real symmetric indefinite matrix, matrix already
D2b1b	Positive-definite	factorized by F07PDF, packed storage
D2010	F01ABF	Inverse of real symmetric positive-definite matrix using iterative refinement
	F01ADF	Inverse of real symmetric positive-definite matrix
	F01BUF	$ULDL^TU^T$ factorization of real symmetric positive-definite band matrix
	FO3AEF	LL^T factorization and determinant of real symmetric positive-definite matrix
	F04ABF	Solution of real symmetric positive-definite simultaneous linear equations with
	EOAAEE	multiple right-hand sides using iterative refinement (Black Box) Solution of real symmetric positive-definite simultaneous linear equations using
	F04AFF	iterative refinement (coefficient matrix already factorized by F03AEF)
	F04AGF	Solution of real symmetric positive-definite simultaneous linear equations (coeffi-
		cient matrix already factorized by F03AEF)
	F04ASF	Solution of real symmetric positive-definite simultaneous linear equations, one right-
		hand side using iterative refinement (Black Box)
	F04FEF	Solution of the Yule–Walker equations for real symmetric positive-definite Toeplitz
	F04FFF	matrix, one right-hand side Solution of real symmetric positive-definite Toeplitz system, one right-hand side
	IOTIT	Solution of four symmetric positive definite roophez system, one figur-hand side

	FO4MEF	Update solution of the Yule–Walker equations for real symmetric positive-definite Toeplitz matrix
	F04MFF F07FDF	Update solution of real symmetric positive-definite Toeplitz system (SPOTRF/DPOTRF) Cholesky factorization of real symmetric positive-definite
	FO7FEF	matrix (SPOTRS/DPOTRS) Solution of real symmetric positive-definite system of linear
	F07FGF	equations, multiple right-hand sides, matrix already factorized by F07FDF (SPOCON/DPOCON) Estimate condition number of real symmetric positive-
	F07FHF	definite matrix, matrix already factorized by F07FDF (SPORFS/DPORFS) Refined solution with error bounds of real symmetric positive-
	F07FJF	definite system of linear equations, multiple right-hand sides (SPOTRI/DPOTRI) Inverse of real symmetric positive-definite matrix, matrix already factorized by FOZEDE
	F07GDF	already factorized by F07FDF (SPPTRF/DPPTRF) Cholesky factorization of real symmetric positive-definite matrix, packed storage
	F07GEF	(SPPTRS/DPPTRS) Solution of real symmetric positive-definite system of linear equations, multiple right-hand sides, matrix already factorized by F07GDF, packed storage
	F07GGF	(SPPCON/DPPCON) Estimate condition number of real symmetric positive-definite matrix, matrix already factorized by F07GDF, packed storage
	F07GHF	(SPPRFS/DPPRFS) Refined solution with error bounds of real symmetric positive-definite system of linear equations, multiple right-hand sides, packed storage
	F07GJF	(SPPTRI/DPPTRI) Inverse of real symmetric positive-definite matrix, matrix already factorized by F07GDF, packed storage
D2b2	Positive-definite ba	
	F01MCF	LDL^T factorization of real symmetric positive-definite variable-bandwidth matrix
	F04ACF	Solution of real symmetric positive-definite banded simultaneous linear equations with multiple right-hand sides (Black Box)
	F04MCF	Solution of real symmetric positive-definite variable-bandwidth simultaneous linear equations (coefficient matrix already factorized by F01MCF)
	FO7HDF FO7HEF	(SPBTRF/DPBTRF) Cholesky factorization of real symmetric positive-definite band matrix (SPBTRS/DPBTRS) Solution of real symmetric positive-definite band system of
	FO7HEF	linear equations, multiple right-hand sides, matrix already factorized by F07HDF (SPBCON/DPBCON) Estimate condition number of real symmetric positive-
	F07ННF	definite band matrix, matrix already factorized by F07HDF (SPBRFS/DPBRFS) Refined solution with error bounds of real symmetric positive-
	F08UFF	definite band system of linear equations, multiple right-hand sides (SPBSTF/DPBSTF) Computes a split Cholesky factorization of real symmetric
	F08UTF	positive-definite band matrix A (CPBSTF/ZPBSTF) Computes a split Cholesky factorization of complex Hermitian
		positive-definite band matrix A
D2b2a	Tridiagonal	
	F04FAF	Solution of real symmetric positive-definite tridiagonal simultaneous linear equa-
	a	tions, one right-hand side (Black Box)
D2b4	Sparse	D I C E11CDE
	F11GAF	Real sparse symmetric linear systems, set-up for F11GBF
	F11GBF	Real sparse symmetric linear systems, preconditioned conjugate gradient or Lanczos
	F11GCF	Real sparse symmetric linear systems, diagnostic for F11GBF
	F11GDF	Real sparse symmetric linear systems, set-up for F11GEF
	F11GEF	Real sparse symmetric linear systems, preconditioned conjugate gradient or Lanczos, threadsafe
	F11GFF	Real sparse symmetric linear systems, diagnostic for F11GEF
	F11JAF	Real sparse symmetric matrix, incomplete Cholesky factorization Solution of linear system involving incomplete Cholesky preconditioning matrix
	F11JBF	generated by F11JAF
	F11JCF F11JDF	Solution of real sparse symmetric linear system, conjugate gradient/Lanczos method, preconditioner computed by F11JAF (Black Box) Solution of linear system involving preconditioning matrix generated by applying
	F11JEF	SSOR to real sparse symmetric matrix Solution of real sparse symmetric linear system, conjugate gradient/Lanczos
	TIIJEF	method, Jacobi or SSOR preconditioner (Black Box)
D2c	Complex non-Hermit	
D2c1	General F04ADF	Solution of complex simultaneous linear equations with multiple right-hand sides
		(Black Box)
	FO7ARF FO7ASF	(CGETRF/ZGETRF) LU factorization of complex m by n matrix (CGETRS/ZGETRS) Solution of complex system of linear equations, multiple
	F07AUF	right-hand sides, matrix already factorized by F07ARF (CGECON/ZGECON) Estimate condition number of complex matrix, matrix
		already factorized by F07ARF
	F07AVF	(CGERFS/ZGERFS) Refined solution with error bounds of complex system of linear equations, multiple right-hand sides

GAMS.8 [NP3445/2/pdf]

	F07AWF	(CGETRI/ZGETRI) Inverse of complex matrix, matrix already factorized by
	F07NRF	F07ARF (CSYTRF/ZSYTRF) Bunch-Kaufman factorization of complex symmetric matrix
	F07NSF	(CSYTRS/ZSYTRS) Solution of complex symmetric system of linear equations,
		multiple right-hand sides, matrix already factorized by F07NRF
	F07NUF	(CSYCON/ZSYCON) Estimate condition number of complex symmetric matrix, matrix already factorized by F07NRF
	F07NVF	(CSYRFS/ZSYRFS) Refined solution with error bounds of complex symmetric
		system of linear equations, multiple right-hand sides
	FO7NWF	(CSYTRI/ZSYTRI) Inverse of complex symmetric matrix, matrix already factorized by F07NRF
	F07QRF	(CSPTRF/ZSPTRF) Bunch–Kaufman factorization of complex symmetric matrix,
	F07QSF	packed storage (CSPTRS/ZSPTRS) Solution of complex symmetric system of linear equations,
	F07QUF	multiple right-hand sides, matrix already factorized by F07QRF, packed storage (CSPCON/ZSPCON) Estimate condition number of complex symmetric matrix,
	F07QVF	matrix already factorized by F07QRF, packed storage (CSPRFS/ZSPRFS) Refined solution with error bounds of complex symmetric
	F07QWF	system of linear equations, multiple right-hand sides, packed storage (CSPTRI/ZSPTRI) Inverse of complex symmetric matrix, matrix already factorized
	·	by F07QRF, packed storage
D2c2	Banded F07BRF	(CGBTRF/ZGBTRF) LU factorization of complex m by n band matrix
	F07BSF	(CGBTRS/ZGBTRS) Solution of complex band system of linear equations, multiple right-hand sides, matrix already factorized by F07BRF
	F07BUF	(CGBCON/ZGBCON) Estimate condition number of complex band matrix, matrix
		already factorized by F07BRF
	F07BVF	(CGBRFS/ZGBRFS) Refined solution with error bounds of complex band system of linear equations, multiple right-hand sides
	F07VSF	(CTBTRS/ZTBTRS) Solution of complex band triangular system of linear equa-
		tions, multiple right-hand sides
	F07VUF	(CTBCON/ZTBCON) Estimate condition number of complex band triangular matrix
	F07VVF	(CTBRFS/ZTBRFS) Error bounds for solution of complex band triangular system
D2.2	Triangular	of linear equations, multiple right-hand sides
D2c3	F06SJF	(CTRSV/ZTRSV) System of equations, complex triangular matrix
D203	F06SJF F06SKF	(CTBSV/ZTBSV) System of equations, complex triangular band matrix
D263	F06SJF	(CTBSV/ZTBSV) System of equations, complex triangular band matrix (CTPSV/ZTPSV) System of equations, complex triangular packed matrix (CTRSM/ZTRSM) Solves system of equations with multiple right-hand sides,
D203	F06SJF F06SKF F06SLF F06ZJF	(CTBSV/ZTBSV) System of equations, complex triangular band matrix (CTPSV/ZTPSV) System of equations, complex triangular packed matrix (CTRSM/ZTRSM) Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix
D263	F06SJF F06SKF F06SLF	(CTBSV/ZTBSV) System of equations, complex triangular band matrix (CTPSV/ZTPSV) System of equations, complex triangular packed matrix (CTRSM/ZTRSM) Solves system of equations with multiple right-hand sides,
D2C3	F06SJF F06SKF F06SLF F06ZJF F07TSF	(CTBSV/ZTBSV) System of equations, complex triangular band matrix (CTPSV/ZTPSV) System of equations, complex triangular packed matrix (CTRSM/ZTRSM) Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix (CTRTRS/ZTRTRS) Solution of complex triangular system of linear equations, multiple right-hand sides (CTRCON/ZTRCON) Estimate condition number of complex triangular matrix
D203	F06SJF F06SKF F06SLF F06ZJF F07TSF	(CTBSV/ZTBSV) System of equations, complex triangular band matrix (CTPSV/ZTPSV) System of equations, complex triangular packed matrix (CTRSM/ZTRSM) Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix (CTRTRS/ZTRTRS) Solution of complex triangular system of linear equations, multiple right-hand sides (CTRCON/ZTRCON) Estimate condition number of complex triangular matrix (CTRRFS/ZTRRFS) Error bounds for solution of complex triangular system of
D263	F06SJF F06SKF F06SLF F06ZJF F07TSF	(CTBSV/ZTBSV) System of equations, complex triangular band matrix (CTPSV/ZTPSV) System of equations, complex triangular packed matrix (CTRSM/ZTRSM) Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix (CTRTRS/ZTRTRS) Solution of complex triangular system of linear equations, multiple right-hand sides (CTRCON/ZTRCON) Estimate condition number of complex triangular matrix (CTRRFS/ZTRRFS) Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides (CTRTRI/ZTRTRI) Inverse of complex triangular matrix
DZCS	F06SJF F06SKF F06SLF F06ZJF F07TSF F07TUF F07TVF	(CTBSV/ZTBSV) System of equations, complex triangular band matrix (CTPSV/ZTPSV) System of equations, complex triangular packed matrix (CTRSM/ZTRSM) Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix (CTRTRS/ZTRTRS) Solution of complex triangular system of linear equations, multiple right-hand sides (CTRCON/ZTRCON) Estimate condition number of complex triangular matrix (CTRRFS/ZTRRFS) Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides (CTRTRI/ZTRTRI) Inverse of complex triangular matrix (CTPTRS/ZTPTRS) Solution of complex triangular system of linear equations,
D203	FO6SJF FO6SKF FO6SLF FO6ZJF FO7TSF FO7TUF FO7TVF	(CTBSV/ZTBSV) System of equations, complex triangular band matrix (CTPSV/ZTPSV) System of equations, complex triangular packed matrix (CTRSM/ZTRSM) Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix (CTRTRS/ZTRTRS) Solution of complex triangular system of linear equations, multiple right-hand sides (CTRCON/ZTRCON) Estimate condition number of complex triangular matrix (CTRRFS/ZTRRFS) Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides (CTRTRI/ZTRTRI) Inverse of complex triangular matrix
DZC3	FO6SJF FO6SKF FO6SLF FO6ZJF FO7TSF FO7TUF FO7TVF FO7TWF FO7USF	(CTBSV/ZTBSV) System of equations, complex triangular band matrix (CTPSV/ZTPSV) System of equations, complex triangular packed matrix (CTRSM/ZTRSM) Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix (CTRTRS/ZTRTRS) Solution of complex triangular system of linear equations, multiple right-hand sides (CTRCON/ZTRCON) Estimate condition number of complex triangular matrix (CTRRFS/ZTRRFS) Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides (CTRTRI/ZTRTRI) Inverse of complex triangular matrix (CTPTRS/ZTPTRS) Solution of complex triangular system of linear equations, multiple right-hand sides, packed storage (CTPCON/ZTPCON) Estimate condition number of complex triangular matrix, packed storage
DZCS	FO6SJF FO6SKF FO6SLF FO6ZJF FO7TSF FO7TUF FO7TVF FO7TWF FO7USF	(CTBSV/ZTBSV) System of equations, complex triangular band matrix (CTPSV/ZTPSV) System of equations, complex triangular packed matrix (CTRSM/ZTRSM) Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix (CTRTRS/ZTRTRS) Solution of complex triangular system of linear equations, multiple right-hand sides (CTRCON/ZTRCON) Estimate condition number of complex triangular matrix (CTRTRS/ZTRRFS) Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides (CTRTRI/ZTRTRI) Inverse of complex triangular matrix (CTPTRS/ZTPTRS) Solution of complex triangular system of linear equations, multiple right-hand sides, packed storage (CTPCON/ZTPCON) Estimate condition number of complex triangular matrix, packed storage (CTPRFS/ZTPRFS) Error bounds for solution of complex triangular system of
DZCS	FO6SJF FO6SKF FO6SLF FO6ZJF FO7TSF FO7TUF FO7TVF FO7TWF FO7USF	(CTBSV/ZTBSV) System of equations, complex triangular band matrix (CTPSV/ZTPSV) System of equations, complex triangular packed matrix (CTRSM/ZTRSM) Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix (CTRTRS/ZTRTRS) Solution of complex triangular system of linear equations, multiple right-hand sides (CTRCON/ZTRCON) Estimate condition number of complex triangular matrix (CTRRFS/ZTRRFS) Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides (CTRTRI/ZTRTRI) Inverse of complex triangular matrix (CTPTRS/ZTPTRS) Solution of complex triangular system of linear equations, multiple right-hand sides, packed storage (CTPCON/ZTPCON) Estimate condition number of complex triangular matrix, packed storage
DZC3	FO6SJF FO6SKF FO6SLF FO6ZJF FO7TSF FO7TUF FO7TVF FO7TWF FO7UF FO7UF	(CTBSV/ZTPSV) System of equations, complex triangular band matrix (CTPSV/ZTPSV) System of equations, complex triangular packed matrix (CTRSM/ZTRSM) Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix (CTRTRS/ZTRTRS) Solution of complex triangular system of linear equations, multiple right-hand sides (CTRCON/ZTRCON) Estimate condition number of complex triangular matrix (CTRRFS/ZTRRFS) Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides (CTRTRI/ZTRTRI) Inverse of complex triangular matrix (CTPTRS/ZTPTRS) Solution of complex triangular system of linear equations, multiple right-hand sides, packed storage (CTPCON/ZTPCON) Estimate condition number of complex triangular matrix, packed storage (CTPRFS/ZTPRFS) Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides, packed storage
DZCS	FO6SJF FO6SKF FO6SLF FO6ZJF FO7TSF FO7TUF FO7TVF FO7TWF FO7UF FO7UF FO7UF	(CTBSV/ZTBSV) System of equations, complex triangular band matrix (CTPSV/ZTPSV) System of equations, complex triangular packed matrix (CTRSM/ZTRSM) Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix (CTRTRS/ZTRTRS) Solution of complex triangular system of linear equations, multiple right-hand sides (CTRCON/ZTRCON) Estimate condition number of complex triangular matrix (CTRRFS/ZTRRFS) Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides (CTRTRI/ZTRTRI) Inverse of complex triangular matrix (CTPTRS/ZTPTRS) Solution of complex triangular system of linear equations, multiple right-hand sides, packed storage (CTPCON/ZTPCON) Estimate condition number of complex triangular matrix, packed storage (CTPRFS/ZTPRFS) Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides, packed storage (CTPTRI/ZTPTRI) Inverse of complex triangular matrix, packed storage (CTPTRI/ZTPTRI) Inverse of complex triangular matrix, packed storage (CTPTRI/ZTPTRI) Solution of complex band triangular system of linear equa-
DZCS	FO6SJF FO6SKF FO6SLF FO6ZJF FO7TUF FO7TUF FO7TVF FO7UF FO7UF FO7UF FO7UF FO7UF FO7UF	(CTBSV/ZTBSV) System of equations, complex triangular band matrix (CTPSV/ZTPSV) System of equations, complex triangular packed matrix (CTRSM/ZTRSM) Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix (CTRTRS/ZTRTRS) Solution of complex triangular system of linear equations, multiple right-hand sides (CTRCON/ZTRCON) Estimate condition number of complex triangular matrix (CTRRFS/ZTRRFS) Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides (CTRTRI/ZTRTRI) Inverse of complex triangular matrix (CTPTRS/ZTPTRS) Solution of complex triangular system of linear equations, multiple right-hand sides, packed storage (CTPCON/ZTPCON) Estimate condition number of complex triangular matrix, packed storage (CTPRFS/ZTPRFS) Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides, packed storage (CTPTRI/ZTPTRI) Inverse of complex triangular matrix, packed storage (CTPTRI/ZTPTRI) Inverse of complex triangular matrix, packed storage (CTBTRS/ZTBTRS) Solution of complex band triangular system of linear equations, multiple right-hand sides (CTBCON/ZTBCON) Estimate condition number of complex band triangular
D2c4	FO6SJF FO6SKF FO6SLF FO6SLF FO6ZJF FO7TUF FO7TUF FO7TUF FO7TUF FO7UF FO7UF FO7UF FO7UF FO7UF FO7UF FO7VF FO7VF FO7VF FO7VF	(CTBSV/ZTBSV) System of equations, complex triangular band matrix (CTPSV/ZTPSV) System of equations, complex triangular packed matrix (CTRSM/ZTRSM) Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix (CTRTRS/ZTRTRS) Solution of complex triangular system of linear equations, multiple right-hand sides (CTRCON/ZTRCON) Estimate condition number of complex triangular matrix (CTRRFS/ZTRRFS) Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides (CTRTRI/ZTRTRI) Inverse of complex triangular matrix (CTPTRS/ZTPTRS) Solution of complex triangular system of linear equations, multiple right-hand sides, packed storage (CTPCON/ZTPCON) Estimate condition number of complex triangular matrix, packed storage (CTPRFS/ZTPRFS) Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides, packed storage (CTPTRI/ZTPTRI) Inverse of complex triangular matrix, packed storage (CTBTRS/ZTBTRS) Solution of complex band triangular system of linear equations, multiple right-hand sides (CTBCON/ZTBCON) Estimate condition number of complex band triangular matrix (CTBCFS/ZTBRFS) Error bounds for solution of complex band triangular system of linear equations, multiple right-hand sides
	FO6SJF FO6SKF FO6SLF FO6SLF FO6ZJF FO7TUF FO7TUF FO7TVF FO7TVF FO7UF FO7UF FO7UF FO7UF FO7UF FO7VF FO7VF FO7VF FO7VF FO7VF FO7VF FO7VF FO7VF FO7VF	(CTBSV/ZTBSV) System of equations, complex triangular band matrix (CTPSV/ZTPSV) System of equations, complex triangular packed matrix (CTRSM/ZTRSM) Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix (CTRTRS/ZTRTRS) Solution of complex triangular system of linear equations, multiple right-hand sides (CTRCON/ZTRCON) Estimate condition number of complex triangular matrix (CTRRFS/ZTRRFS) Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides (CTRTRI/ZTRTRI) Inverse of complex triangular matrix (CTPTRS/ZTPTRS) Solution of complex triangular system of linear equations, multiple right-hand sides, packed storage (CTPCON/ZTPCON) Estimate condition number of complex triangular matrix, packed storage (CTPRFS/ZTPRFS) Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides, packed storage (CTPTRI/ZTPTRI) Inverse of complex triangular matrix, packed storage (CTBTRS/ZTBTRS) Solution of complex band triangular system of linear equations, multiple right-hand sides (CTBCON/ZTBCON) Estimate condition number of complex band triangular matrix (CTBRFS/ZTBRFS) Error bounds for solution of complex band triangular system of linear equations, multiple right-hand sides
	FO6SJF FO6SKF FO6SLF FO6SLF FO6ZJF FO7TUF FO7TUF FO7TUF FO7TUF FO7UF FO7UF FO7UF FO7UF FO7UF FO7UF FO7VF FO7VF FO7VF FO7VF	(CTBSV/ZTBSV) System of equations, complex triangular band matrix (CTPSV/ZTPSV) System of equations, complex triangular packed matrix (CTRSM/ZTRSM) Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix (CTRTRS/ZTRTRS) Solution of complex triangular system of linear equations, multiple right-hand sides (CTRCON/ZTRCON) Estimate condition number of complex triangular matrix (CTRRFS/ZTRRFS) Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides (CTRTRI/ZTRTRI) Inverse of complex triangular matrix (CTPTRS/ZTPTRS) Solution of complex triangular system of linear equations, multiple right-hand sides, packed storage (CTPCON/ZTPCON) Estimate condition number of complex triangular matrix, packed storage (CTPRFS/ZTPRFS) Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides, packed storage (CTPTRI/ZTPTRI) Inverse of complex triangular matrix, packed storage (CTBTRS/ZTBTRS) Solution of complex band triangular system of linear equations, multiple right-hand sides (CTBCON/ZTBCON) Estimate condition number of complex band triangular matrix (CTBCFS/ZTBRFS) Error bounds for solution of complex band triangular system of linear equations, multiple right-hand sides
	FO6SJF FO6SKF FO6SLF FO6SLF FO6ZJF FO7TUF FO7TUF FO7TVF FO7TVF FO7UF FO7UF FO7UF FO7UF FO7UF FO7VF FO7VF FO7VF FO7VF FO7VF FO7VF FO7VF FO7VF FO7VF	(CTBSV/ZTBSV) System of equations, complex triangular band matrix (CTPSV/ZTPSV) System of equations, complex triangular packed matrix (CTRSM/ZTRSM) Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix (CTRTRS/ZTRTRS) Solution of complex triangular system of linear equations, multiple right-hand sides (CTRCON/ZTRCON) Estimate condition number of complex triangular matrix (CTRRFS/ZTRRFS) Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides (CTRTRI/ZTRTRI) Inverse of complex triangular matrix (CTPTRS/ZTPTRS) Solution of complex triangular system of linear equations, multiple right-hand sides, packed storage (CTPCON/ZTPCON) Estimate condition number of complex triangular matrix, packed storage (CTPRFS/ZTPRFS) Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides, packed storage (CTPTRI/ZTPTRI) Inverse of complex triangular matrix, packed storage (CTPTRS/ZTBTRS) Solution of complex band triangular system of linear equations, multiple right-hand sides (CTBCON/ZTBCON) Estimate condition number of complex band triangular matrix (CTBRFS/ZTBRFS) Error bounds for solution of complex band triangular system of linear equations, multiple right-hand sides
	F06SJF F06SKF F06SLF F06SLF F06ZJF F07TSF F07TVF F07TVF F07TVF F07UVF F07UVF F07UVF F07VVF F07VVF Sparse F11DNF F11DPF	(CTBSV/ZTBSV) System of equations, complex triangular band matrix (CTPSV/ZTPSV) System of equations, complex triangular packed matrix (CTRSM/ZTRSM) Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix (CTRTRS/ZTRTRS) Solution of complex triangular system of linear equations, multiple right-hand sides (CTRCON/ZTRCON) Estimate condition number of complex triangular matrix (CTRRFS/ZTRRFS) Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides (CTRTRI/ZTRTRI) Inverse of complex triangular matrix (CTPTRS/ZTPTRS) Solution of complex triangular system of linear equations, multiple right-hand sides, packed storage (CTPCON/ZTPCON) Estimate condition number of complex triangular matrix, packed storage (CTPCS/ZTPRFS) Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides, packed storage (CTPTRI/ZTPTRI) Inverse of complex triangular matrix, packed storage (CTBTRS/ZTBTRS) Solution of complex band triangular system of linear equations, multiple right-hand sides (CTBCON/ZTBCON) Estimate condition number of complex band triangular matrix (CTBRFS/ZTBRFS) Error bounds for solution of complex band triangular system of linear equations, multiple right-hand sides
	FO6SJF FO6SKF FO6SLF FO6SLF FO6ZJF FO7TUF FO7TVF FO7TVF FO7UVF FO7UVF FO7UVF FO7VVF Sparse F11DNF F11DPF F11DRF	(CTBSV/ZTBSV) System of equations, complex triangular band matrix (CTPSV/ZTPSV) System of equations, complex triangular packed matrix (CTRSM/ZTRSM) Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix (CTRTRS/ZTRTRS) Solution of complex triangular system of linear equations, multiple right-hand sides (CTRCON/ZTRCON) Estimate condition number of complex triangular matrix (CTRRFS/ZTRRFS) Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides (CTRTRI/ZTRTRI) Inverse of complex triangular matrix (CTPTRS/ZTPTRS) Solution of complex triangular system of linear equations, multiple right-hand sides, packed storage (CTPCON/ZTPCON) Estimate condition number of complex triangular matrix, packed storage (CTPRFS/ZTPRFS) Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides, packed storage (CTPTRI/ZTPTRI) Inverse of complex triangular matrix, packed storage (CTBTRS/ZTBTRS) Solution of complex band triangular system of linear equations, multiple right-hand sides (CTBCON/ZTBCON) Estimate condition number of complex band triangular matrix (CTBRFS/ZTBRFS) Error bounds for solution of complex band triangular system of linear equations, multiple right-hand sides Complex sparse non-Hermitian linear systems, incomplete LU factorization Solution of complex linear system involving incomplete LU preconditioning matrix generated by F11DNF Solution of complex sparse non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, preconditioner computed by F11DNF (Black Box) Solution of linear system involving preconditioning matrix generated by applying SSOR to complex sparse non-Hermitian matrix
	F06SJF F06SKF F06SLF F06SLF F06ZJF F07TUF F07TVF F07TVF F07UVF F07UVF F07UVF F07VVF Sparse F11DNF F11DPF F11DQF	(CTBSV/ZTBSV) System of equations, complex triangular band matrix (CTPSV/ZTPSV) System of equations, complex triangular packed matrix (CTRSM/ZTRSM) Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix (CTRTRS/ZTRTRS) Solution of complex triangular system of linear equations, multiple right-hand sides (CTRCON/ZTRCON) Estimate condition number of complex triangular matrix (CTRRFS/ZTRRFS) Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides (CTRTRI/ZTRTRI) Inverse of complex triangular matrix (CTPTRS/ZTPTRS) Solution of complex triangular system of linear equations, multiple right-hand sides, packed storage (CTPCON/ZTPCON) Estimate condition number of complex triangular matrix, packed storage (CTPTRI/ZTPTRS) Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides, packed storage (CTPTRI/ZTPTRI) Inverse of complex triangular matrix, packed storage (CTBTRS/ZTBTRS) Solution of complex band triangular system of linear equations, multiple right-hand sides (CTBCON/ZTBCON) Estimate condition number of complex band triangular matrix (CTBRFS/ZTBRFS) Error bounds for solution of complex band triangular system of linear equations, multiple right-hand sides Complex sparse non-Hermitian linear systems, incomplete LU factorization Solution of complex linear system involving incomplete LU preconditioning matrix generated by F11DNF Solution of complex sparse non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, preconditioner computed by F11DNF (Black Box) Solution of linear system involving preconditioning matrix generated by applying

D2d D2d1	Complex Hermitian m	natrices
D2d1a	Indefinite	
	F07MRF F07MSF	(CHETRF/ZHETRF) Bunch–Kaufman factorization of complex Hermitian indefi- nite matrix (CHETRS/ZHETRS) Solution of complex Hermitian indefinite system of linear
	FO7MUF	equations, multiple right-hand sides, matrix already factorized by F07MRF (CHECON/ZHECON) Estimate condition number of complex Hermitian indefinite
	FO7MVF	matrix, matrix already factorized by F07MRF (CHERFS/ZHERFS) Refined solution with error bounds of complex Hermitian
	F07MWF	indefinite system of linear equations, multiple right-hand sides (CHETRI/ZHETRI) Inverse of complex Hermitian indefinite matrix, matrix already factorized by F07MRF
	F07PRF	(CHPTRF/ZHPTRF) Bunch–Kaufman factorization of complex Hermitian indefinite matrix, packed storage
	F07PSF	(CHPTRS/ZHPTRS) Solution of complex Hermitian indefinite system of linear equations, multiple right-hand sides, matrix already factorized by F07PRF, packed storage
	F07PUF	(CHPCON/ZHPCON) Estimate condition number of complex Hermitian indefinite matrix, matrix already factorized by F07PRF, packed storage
	F07PVF	(CHPRFS/ZHPRFS) Refined solution with error bounds of complex Hermitian indefinite system of linear equations, multiple right-hand sides, packed storage
	F07PWF	(CHPTRI/ZHPTRI) Inverse of complex Hermitian indefinite matrix, matrix already factorized by F07PRF, packed storage
D2d1b	Positive-definite	
	F07FRF	(CPOTRF/ZPOTRF) Cholesky factorization of complex Hermitian positive-definite matrix
	F07FSF	(CPOTRS/ZPOTRS) Solution of complex Hermitian positive-definite system of linear equations, multiple right-hand sides, matrix already factorized by F07FRF
	F07FUF F07FVF	(CPOCON/ZPOCON) Estimate condition number of complex Hermitian positive- definite matrix, matrix already factorized by F07FRF (CPORFS/ZPORFS) Refined solution with error bounds of complex Hermitian
	FO7FWF	positive-definite system of linear equations, multiple right-hand sides (CPOTRI/ZPOTRI) Inverse of complex Hermitian positive-definite matrix, matrix
	F07GRF	already factorized by F07FRF (CPPTRF/ZPPTRF) Cholesky factorization of complex Hermitian positive-definite
	F07GSF	matrix, packed storage (CPPTRS/ZPPTRS) Solution of complex Hermitian positive-definite system of linear equations, multiple right-hand sides, matrix already factorized by F07GRF,
	F07GUF	packed storage (CPPCON/ZPPCON) Estimate condition number of complex Hermitian positive- definite matrix, matrix already factorized by F07GRF, packed storage
	F07GVF	(CPPRFS/ZPPRFS) Refined solution with error bounds of complex Hermitian positive-definite system of linear equations, multiple right-hand sides, packed
	F07GWF	storage (CPPTRI/ZPPTRI) Inverse of complex Hermitian positive-definite matrix, matrix
D2d2	Positive-definite bar	already factorized by F07GRF, packed storage
D202	FO7HRF	(CPBTRF/ZPBTRF) Cholesky factorization of complex Hermitian positive-definite band matrix
	F07HSF	(CPBTRS/ZPBTRS) Solution of complex Hermitian positive-definite band system of linear equations, multiple right-hand sides, matrix already factorized by F07HRF
	F07HUF	(CPBCON/ZPBCON) Estimate condition number of complex Hermitian positive-definite band matrix, matrix already factorized by F07HRF
D2d4	F07HVF Sparse	(CPBRFS/ZPBRFS) Refined solution with error bounds of complex Hermitian positive-definite band system of linear equations, multiple right-hand sides
D2u4	F11JNF	Complex sparse Hermitian matrix, incomplete Cholesky factorization
	F11JPF	Solution of complex linear system involving incomplete Cholesky preconditioning matrix generated by F11JNF
	F11JQF	Solution of complex sparse Hermitian linear system, conjugate gradient/Lanczos method, preconditioner computed by F11JNF (Black Box)
	F11JRF	Solution of linear system involving preconditioning matrix generated by applying SSOR to complex sparse Hermitian matrix
Da-	F11JSF	Solution of complex sparse Hermitian linear system, conjugate gradient/Lanczos method, Jacobi or SSOR preconditioner (Black Box)
D2e	Associated operations F11DKF F11XAF	(e.g., matrix reorderings) Real sparse nonsymmetric linear systems, line Jacobi preconditioner Real sparse nonsymmetric matrix vector multiply
	F11XEF	Real sparse symmetric matrix vector multiply Real sparse symmetric matrix vector multiply
	F11XEF F11XNF	Complex sparse non-Hermitian matrix vector multiply
	F11XSF	Complex sparse Hermitian matrix vector multiply Complex sparse Hermitian matrix vector multiply
	F11ZAF	Real sparse nonsymmetric matrix reorder routine

GAMS.10 [NP3445/2/pdf]

	F11ZBF F11ZNF	Real sparse symmetric matrix reorder routine Complex sparse non-Hermitian matrix reorder routine
	F11ZPF	Complex sparse Hermitian matrix reorder routine
D3 D3a D3a1	Determinants Real nonsymmetric m General	atrices
Doar	FO3AAF	Determinant of real matrix (Black Box)
Del	F03AFF	LU factorization and determinant of real matrix
D3b	Real symmetric matri General	ces
D3b1	Positive-definite	
D3b1b	F03ABF	Determinant of real symmetric positive-definite matrix (Black Box)
	FOSAEF	LL^T factorization and determinant of real symmetric positive-definite matrix
D3b2	Positive-definite bar	
D302	FO3ACF	Determinant of real symmetric positive-definite band matrix (Black Box)
D3c	Complex non-Hermitis	
D3c1	General	
	FO3ADF	Determinant of complex matrix (Black Box)
D4	Eigenvalues, eigenvectors	
D4a	Ordinary eigenvalue p	roblems $(Ax = \lambda x)$
D4a1	Real symmetric	All simulations of male months of the language (Dl. la D.)
	F02FAF	All eigenvalues and eigenvectors of real symmetric matrix (Black Box)
	F02FCF F06BPF	Selected eigenvalues and eigenvectors of real symmetric matrix (Black Box)
	F08FCF	Compute eigenvalue of 2 by 2 real symmetric matrix (SSYEVD/DSYEVD) All eigenvalues and optionally all eigenvectors of real sym-
		metric matrix, using divide and conquer
	F08GCF	(SSPEVD/DSPEVD) All eigenvalues and optionally all eigenvectors of real sym-
	F08HCF	metric matrix, packed storage, using divide and conquer (SSBEVD/DSBEVD) All eigenvalues and optionally all eigenvectors of real sym-
		metric band matrix, using divide and conquer
D4a2	Real nonsymmetric	
	F02EAF	All eigenvalues and Schur factorization of real general matrix (Black Box)
	F02EBF	All eigenvalues and eigenvectors of real general matrix (Black Box)
_	F02ECF	Selected eigenvalues and eigenvectors of real nonsymmetric matrix (Black Box)
D4a3	Complex Hermitian	
	FO2HAF	All eigenvalues and eigenvectors of complex Hermitian matrix (Black Box)
	F02HCF	Selected eigenvalues and eigenvectors of complex Hermitian matrix (Black Box)
	F08FQF	(CHEEVD/ZHEEVD) All eigenvalues and optionally all eigenvectors of complex Hermitian matrix, using divide and conquer
	F08GQF	(CHPEVD/ZHPEVD) All eigenvalues and optionally all eigenvectors of complex
		Hermitian matrix, packed storage, using divide and conquer
	F08HQF	(CHBEVD/ZHBEVD) All eigenvalues and optionally all eigenvectors of complex Hermitian band matrix, using divide and conquer
D4a4	Complex non-Herm	· · · · · · · · · · · · · · · · · · ·
Diai	F02GAF	All eigenvalues and Schur factorization of complex general matrix (Black Box)
	F02GBF	All eigenvalues and eigenvectors of complex general matrix (Black Box)
	F02GCF	Selected eigenvalues and eigenvectors of complex nonsymmetric matrix (Black Box)
D4a5	Tridiagonal	
	F08JCF	(SSTEVD/DSTEVD) All eigenvalues and optionally all eigenvectors of real symmetric tridic and protein tridic and converge
	F08JEF	metric tridiagonal matrix, using divide and conquer (SSTEQR/DSTEQR) All eigenvalues and eigenvectors of real symmetric tridiagonal
	FOOSEF	matrix, reduced from real symmetric matrix using implicit QL or QR
	F08JFF	(SSTERF/DSTERF) All eigenvalues of real symmetric tridiagonal matrix, root-free
		variant of QL or QR
	F08JGF	(SPTEQR/DPTEQR) All eigenvalues and eigenvectors of real symmetric positive- definite tridiagonal matrix, reduced from real symmetric positive-definite matrix
	F08JJF	(SSTEBZ/DSTEBZ) Selected eigenvalues of real symmetric tridiagonal matrix by
		bisection
	F08JKF	(SSTEIN/DSTEIN) Selected eigenvectors of real symmetric tridiagonal matrix by
D4a6	Banded	inverse iteration, storing eigenvectors in real array
D4a0	F08HCF	(SSBEVD/DSBEVD) All eigenvalues and optionally all eigenvectors of real sym-
		metric band matrix, using divide and conquer
	F08HQF	(CHBEVD/ZHBEVD) All eigenvalues and optionally all eigenvectors of complex
	a	Hermitian band matrix, using divide and conquer
D4a7	Sparse	Colored disampless and disamples of the control of
D4I	F02FJF	Selected eigenvalues and eigenvectors of sparse symmetric eigenproblem (Black Box)
D4b		e problems (e.g., $Ax = \lambda Bx$)
D4b1	Real symmetric F02FDF	All eigenvalues and eigenvectors of real symmetric-definite generalized problem
	rozror	(Black Box)
	F02FJF	Selected eigenvalues and eigenvectors of sparse symmetric eigenproblem (Black Box)
	=	(3.44.1.2.4.1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.

D4b3 Complex Hermitian, and antires (Hales Bras) POSEP D4b4 Complex general POSEP D4b5 Banded POSEP D4b6 Banded POSEP D4b6 Banded POSEP D502FF D	D4b2	Real general	
D4b4 Complex general reports (Black Box) D4b5 Banded 702FFF All eigenvalues and optionally eigenvectors of generalized complex eigenproblem by QZ algorithm (Black Box) D4c Associated operations FP03FFF All eigenvalues and optionally eigenvectors of generalized complex eigenproblem (Black Box) D4c Associated operations FP03FFF All eigenvalues and optionally eigenvectors of generalized density in the part of the par			algorithm, real matrices (Black Box)
D4b5 Banded F02FHF All eigenvalues and optionally eigenvectors of generalized complex eigenproblem by QZ algorithm (Black Box) QZ algorithm (Black Box)	D4b3	_	All eigenvalues and eigenvectors of complex Hermitian-definite generalized problem
Date PoZFFF All eigenvalues of generalized banded real symmetric-definite eigenproblem (Black PoZFFF Engometror of generalized real banded eigenproblem by inverse iteration PoZFFF Engometror of generalized real banded eigenproblem by inverse iteration	D4b4		All eigenvalues and optionally eigenvectors of generalized complex eigenproblem by
POSEPT All eigenvalues of generalized banded real symmetric-definite eigenproblem (Black Box) Possept Eigenvector of generalized real banded eigenproblem by inverse iteration	D4b5	Banded	QZ algorithm (Black Box)
Associated operations FORGEF F	D400		, 0
FORETY (STRENC/DTRENC) Reorder Schur factorization of real matrix, using orthogonal similarity transformation FORETY (STRENC)/DTRENC) Reorder Schur factorization of real matrix, form orthonomals of right invariant subspace for selected eigenvalues, with estimates of sensitivities FORETY (STRENC)/DTRENC) Reorder Schur factorization of complex matrix using unitary similarity transformation FORETY (STRENC)/STRENC) Reorder Schur factorization of complex matrix, form orthonomal basis of right invariant subspace for selected eigenvalues and eigenvalues and eigenvalues and eigenvalues are sensitivities of sensitivi		F02SDF	Eigenvector of generalized real banded eigenproblem by inverse iteration
F088GF GTRSEN/DTRSEN) Reorder Schur factorization of real matrix, form orthonormal basis of right invariant subspace for selected eigenvalues, with estimates of sensitivities	D4c	_	(STREXC/DTREXC) Reorder Schur factorization of real matrix using orthogonal
POSUTE CITRSINA/DTRSNA) Estimates of sensitivities of selected eigenvalues and eigenvalues are provided by the complex matrix using unitary similarity transformation		F08QGF	(STRSEN/DTRSEN) Reorder Schur factorization of real matrix, form orthonormal basis of right invariant subspace for selected eigenvalues, with estimates of
FORTF CTREXC/ZTREXC) Reorder Schur factorization of complex matrix using unitary similarity transformation (CTRSEN/ZTRSEN), Reorder Schur factorization of complex matrix, form orthonormal basis of right invariant subspace for selected eigenvalues, with estimates of sensitivities CTRSNA/ZTRSNA) Estimates of sensitivities of selected eigenvalues and eigenvectors of complex upper triangular matrix		F08QLF	(STRSNA/DTRSNA) Estimates of sensitivities of selected eigenvalues and eigen-
D4c1		FOSQTF	(CTREXC/ZTREXC) Reorder Schur factorization of complex matrix using unitary
D4c1 Transform problem D4c1 Balance matrix F08NFF F08NFF (CGEBAL/DGEBAL) Balance cal general matrix F08NFF F08NFF (CGEBAL/ZGEBAL) Balance can general matrix CGEBAL/DGEBAL) Balance complex general matrix to upper desember gorm CGUCGHRD/DGEHRD) Orthogonal reduction of complex general matrix to upper Hessenberg form CGUCGHRD/DGEHRD) Orthogonal reduction of complex general matrix to upper Hessenberg form CGUCGHRD/DGEHRD) Orthogonal reduction of complex general matrix to upper Hessenberg form CGUCGHRD/DGEHRD) Orthogonal reduction of complex general matrix to upper Hessenberg form CGUCGHRD/DGEHRD) Orthogonal reduction of complex general matrix to upper Hessenberg form CGUCGHRD/DGEHRD) Orthogonal reduction of		F08QUF	thonormal basis of right invariant subspace for selected eigenvalues, with estimates
D4c1b F08NFF SGEBAL/DGEBAL) Balance real general matrix F08NFF F08NFF SGEBAL/ZGEBAL) Balance complex general matrix		F08QYF	(CTRSNA/ZTRSNA) Estimates of sensitivities of selected eigenvalues and eigen-
FOSHIF FOSHUF CGEBAL/DCEBAL) Balance real general matrix FOSHUF FO	D4c1	-	
D4c1b1 D4c1b2	D4c1a		(CCEDAL (DCEDAL) D.L.
D4c1b Tridiagonal FO8FEF CHETRD/ZHETRD) Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form determined by FO8FEF FO8FEF CUNGTR/ZUNGTR) Generate unitary transformation matrix from reduction to tridiagonal form determined by FO8FSF FO8GEF GSPTR/DDSPTRD) Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form determined by FO8FEF FO8GEF FO8GEF GSPTR/DDPGTR) Generate orthogonal transformation matrix from reduction to tridiagonal form determined by FO8GEF FO8GEF CCHPTRD/ZHPTRD) Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form determined by FO8GEF FO8GEF GSPTR/DSPTRD) Orthogonal reduction of complex Hermitian matrix to real symmetric tridiagonal form determined by FO8GSF FO8EF GSBTRD/ZHBTRD) Unitary reduction of real symmetric band matrix to symmetric tridiagonal form FO8BEF GSBTRD/ZHBTRD) Unitary reduction of real symmetric band matrix to symmetric tridiagonal form FO8BEF GSGEHRD/DGEHRD) Orthogonal reduction of real general matrix to upper Hessenberg form FO8MEF GSGEHRD/DGEHRD) Orthogonal reduction of real general matrix to upper Hessenberg form FO8MEF GSGEHRD/DGHRD) Orthogonal reduction of real general matrix to upper Hessenberg form FO8MEF GGEHRD/ZGEHRD) Unitary reduction of complex general matrix to upper Hessenberg form determined by FO8NEF GCGEHRD/ZGEHRD) Unitary reduction of complex general matrix to upper Hessenberg form determined by FO8NEF GCGEHRD/ZGEHRD) Unitary reduction of complex general matrix to upper Hessenberg form determined by FO8NEF GCGEHRD/ZGEHRD) Unitary reduction of complex general matrix to upper Hessenberg form determined by FO8NEF GCGEHRD/ZGEHRD) Generate unitary transformation matrix from reduction to Hessenberg form determined by FO8NEF GCGEHRD/GGBRD) Reduction			, , ,
Tridiagonal FOSFEF (SSYTRD/DSYTRD) Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form FOSFEF (SORGTR/DORGTR) Generate orthogonal transformation matrix from reduction to tridiagonal form determined by FOSFEF FOSFEF (CHETRD/ZHETRD) Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form determined by FOSFSF FOSFEF (SSPTRD/DSPTRD) Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form determined by FOSFSF FOSGEF (SSPTRD/DSPTRD) Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form, packed storage FOSGEF (SSPTRD/DSPTRD) Unitary reduction of complex Hermitian matrix from reduction to tridiagonal form, packed storage (CHPTRD/ZHPTRD) Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form, packed storage FOSSEF (CHPTRD/ZHPTRD) Unitary reduction of complex Hermitian matrix to symmetric tridiagonal form FOSSEF (SSBTRD/DSBTRD) Orthogonal reduction of real symmetric band matrix to symmetric tridiagonal form FOSSEF (SSBTRD/DSBTRD) Orthogonal reduction of real symmetric band matrix to symmetric tridiagonal form FOSSEF (SGEHRD/DGEHRD) Orthogonal reduction of real general matrix to upper Hessenberg form (SGCEHRD/ZGEHRD) Unitary reduction of real general matrix to upper Hessenberg form (SGCEHRD/ZGEHRD) Unitary reduction of complex general matrix to upper Hessenberg form determined by FOSNEF (CUNGHR/ZUNGHR) Generate unitary transformation matrix from reduction to Hessenberg form determined by FOSNEF (CUNGHR/ZUNGHR) Generate unitary transformation matrix from reduction to Hessenberg form determined by FOSNEF (CUNGHR/ZUNGHR) Generate unitary transformation matrix to upper Hessenberg form determined by FOSNEF (CUNGHR/ZUNGHR) Generate unitary transformation matrix to upper Hessenberg form determined by FOSNEF (CUNGHR/ZUNGHR) Generate unitary transformation matrix to upper Hessenberg form determined by FOSNEF (CUNGHR/ZUNGHR) Generate unitary transformation matrix to upper hessenberg form determined by FOSNEF (CUNGHR/	D4c1b		
FOSFEF (SSYTRD/DSYTRD) Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form FOSFFF (SORGTR/DORGTR) Generate orthogonal transformation matrix from reduction to tridiagonal form determined by FOSFEF (CHETRD/ZHETRD) Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form (CUNGTR/ZUNGTR) Generate unitary transformation matrix from reduction to tridiagonal form determined by FOSFSF FOSGEF (SSPTRD/DSPTRD) Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form determined by FOSGEF FOSGEF (CHPTRD/ZHPTRD) Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form determined by FOSGEF FOSGEF (CHPTRD/ZHPTRD) Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form determined by FOSGEF FOSGEF (CHPTRD/ZHPTRD) Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form determined by FOSGSF FOSHEF (SSBTRD/DSBTRD) Orthogonal reduction of real symmetric band matrix to symmetric tridiagonal form FOSHEF (SGEHRD/DGBHRD) Unitary reduction of complex Hermitian band matrix to real symmetric tridiagonal form FOSHEF (SGEHRD/DGBHRD) Orthogonal reduction of real general matrix to upper Hessenberg form FOSHF (SGRGHR/DORGHR) Generate orthogonal transformation matrix from reduction to Hessenberg form determined by FOSNEF FOSHSF (CGEHRD/ZGEHRD) Unitary reduction of complex general matrix to upper Hessenberg form determined by FOSNEF FOSHSF (SGBBRD/DGBBRD) Reduction of real rectangular band matrix to upper hessenberg form determined by FOSNSF D4c1b3 Other FOSHEF (SGBBRD/DGBBRD) Reduction of real rectangular band matrix to upper bidiagonal form FOSHSF (SGSBRD/ZGBBRD) Reduction of complex rectangular band matrix to upper bidiagonal form FOSHSF (SGSSEF) Reduction to standard form, generalized real symmetric-definite banded eigenproblem FOSSEF (SSSSET) Reduction to standard form of real symmetric-definite general matrix to upper bidiagonal form		Tridiagonal	
FO8FFF SORĞTR/DORGTR) Generate orthogonal transformation matrix from reduction to tridiagonal form determined by FO8FEF (CHETRD/ZHETRD) Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form (CUNGTR/ZUNGTR) Generate unitary transformation matrix from reduction to tridiagonal form determined by F08FSF (SSPTRD/DSPTRD) Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form packed storage (SOPGTR/DOPGTR) Generate orthogonal transformation matrix from reduction to tridiagonal form determined by F08GEF (CHPTRD/ZHPTRD) Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form, packed storage (CUPGTR/ZUPGTR) Generate unitary transformation matrix from reduction to tridiagonal form determined by F08GEF (SSBTRD/DSBTRD) Orthogonal reduction of real symmetric band matrix to symmetric tridiagonal form determined by F08GEF (SSBTRD/DSBTRD) Orthogonal reduction of real symmetric band matrix to symmetric tridiagonal form FO8HSF (SSBTRD/DSBTRD) Orthogonal reduction of real symmetric band matrix to upper Hessenberg form FO8MFF (SORGHR/DORGHR) Generate orthogonal transformation matrix from reduction to Hessenberg form determined by F08NEF (CGEHRD/ZGEHRD) Unitary reduction of complex general matrix to upper Hessenberg form determined by F08NEF (CGEHRD/ZGEHRD) Unitary reduction of complex general matrix to upper Hessenberg form determined by F08NEF (CGBHRD/GGHRD) Unitary reduction of complex general matrix to upper Hessenberg form determined by F08NEF (SORGHR/DORGHR) Generate unitary transformation matrix from reduction to Hessenberg form determined by F08NEF (CGBHRD/GGHRD) Unitary reduction of complex general matrix to upper bidiagonal form FO8LSF (SGBRD/ZGBBRD) Reduction of real rectangular band matrix to upper bidiagonal form F08LSF (SGBRD/ZGBBRD) Reduction of complex rectangular band matrix to upper bidiagonal form F08LSF (SGBRD/SGBRD) Reduction of complex rectangular band matrix to upper bidiagonal form F08LSF (SGBRD/SGBRD) Reduction of comp	210121		(SSYTRD/DSYTRD) Orthogonal reduction of real symmetric matrix to symmetric
FORFSF C(HETRD/ZHETRD) Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form determined by FORFSF			· ·
FO8FSF CCHETRD/ZHETRD) Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form symmetric tridiagonal form determined by FO8FSF		F08FFF	
F08EFF (CUNGTR/ZUNGTR) Generate unitary transformation matrix from reduction to tridiagonal form determined by F08FSF F08GEF (SSPTRD/DSPTRD) Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form, packed storage (SOPGTR/DOPGTR) Generate orthogonal transformation matrix from reduction to tridiagonal form determined by F08GEF (CHPTRD/ZHPTRD) Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form, packed storage (CUPGTR/ZUPGTR) Generate unitary transformation matrix from reduction to tridiagonal form determined by F08GSF (SSBTRD/DSBTRD) Orthogonal reduction of real symmetric band matrix to symmetric tridiagonal form (CHBTRD/ZHBTRD) Unitary reduction of complex Hermitian band matrix to real symmetric tridiagonal form (CHBTRD/ZHBTRD) Unitary reduction of complex Hermitian band matrix to real symmetric tridiagonal form F08NFF (SGEHRD/DGEHRD) Orthogonal reduction of real general matrix to upper Hessenberg form F08NFF (SGEHRD/DGEHRD) Orthogonal reduction of real general matrix to upper Hessenberg form determined by F08NEF (CGFRD/ZGEHRD) Unitary reduction of complex general matrix to upper Hessenberg form determined by F08NEF (CUNGHR/ZUNGHR) Generate unitary transformation matrix from reduction to Hessenberg form determined by F08NSF D4c1b3 Other F08LFF (SGBBRD/DGBBRD) Reduction of real rectangular band matrix to upper bidiagonal form (CGBBRD/ZGBBRD) Reduction of complex rectangular band matrix to upper bidiagonal form F08LFF (RGBBRD/ZGBBRD) Reduction of complex rectangular band matrix to upper bidiagonal form F01EVF Reduction to standard form, generalized real symmetric-definite banded eigenproblem F01EVF R02SF (SYGST/DSYGST) Reduction to standard form of real symmetric-definite general segmentary forms from the standard form of real symmetric-definite general segmentary forms from the standard form of real symmetric-definite general segmentary forms from the standard form of real symmetric-definite general segmentary forms from the proper from the standard form of		F08FSF	(CHETRD/ZHETRD) Unitary reduction of complex Hermitian matrix to real
F08GEF (SSPTRD/DSPTRD) Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form, packed storage (SOPGTR)/DOPGTR) Generate orthogonal transformation matrix from reduction to tridiagonal form determined by F08GEF (CHPTRD/ZHPTRD) Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form, packed storage (CHPTRD/ZHPTRD) Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form determined by F08GSF (SSBTRD/DSBTRD) Orthogonal reduction of real symmetric band matrix to symmetric tridiagonal form (CHBTRD/ZHBTRD) Unitary reduction of complex Hermitian band matrix to real symmetric tridiagonal form (CHBTRD/ZHBTRD) Unitary reduction of complex Hermitian band matrix to real symmetric tridiagonal form (SORGHR/DORGHR) Orthogonal reduction of real general matrix to upper Hessenberg form determined by F08NEF (SGEHRD/DGEHRD) Unitary reduction of complex general matrix to upper Hessenberg form determined by F08NEF (CGEHRD/ZGEHRD) Unitary reduction of complex general matrix to upper Hessenberg form determined by F08NSF (CUNGHR/ZUNGHR) Generate unitary transformation matrix from reduction to Hessenberg form determined by F08NSF (CUNGHR/ZUNGHR) Generate unitary transformation matrix from reduction to Hessenberg form determined by F08NSF (CONGHR/ZUNGHR) Generate unitary transformation matrix to upper hessenberg form determined by F08NSF (CONGHR/ZUNGHR) Generate unitary transformation matrix to upper hessenberg form determined by F08NSF (CONGHR/ZUNGHR) Generate unitary transformation matrix to upper hessenberg form determined by F08NSF (CONGHR/ZUNGHR) Generate unitary transformation matrix to upper hessenberg form determined by F08NSF (CONGHR/ZUNGHR) Generate unitary transformation matrix to upper hessenberg form determined by F08NSF (CONGHR/ZUNGHR) Generate unitary transformation matrix to upper hessenberg form determined by F08NSF (CONGHR/ZUNGHR) Generate unitary transformation matrix to upper hessenberg form determined by F08NSF		F08FTF	(CUNGTR/ZUNGTR) Generate unitary transformation matrix from reduction to
FO8GFF (SOPGTR/DOPGTR) Generate orthogonal transformation matrix from reduction to tridiagonal form determined by F08GEF F08GFF (CHPTRD/ZHPTRD) Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form, packed storage symmetric tridiagonal form, packed storage F08GFF (CUPGTR/ZUPGTR) Generate unitary transformation matrix from reduction to tridiagonal form determined by F08GSF F08HEF (SSBTRD/DSBTRD) Orthogonal reduction of real symmetric band matrix to symmetric tridiagonal form F08HSF (SGEHRD/DGEHRD) Orthogonal reduction of complex Hermitian band matrix to real symmetric tridiagonal form F08NFF (SGEHRD/DGEHRD) Orthogonal reduction of real general matrix to upper Hessenberg form F08NFF (SORGHR/DORGHR) Generate orthogonal transformation matrix from reduction to Hessenberg form determined by F08NEF (CGEHRD/ZGEHRD) Unitary reduction of complex general matrix to upper Hessenberg form F08NFF (CUNGHR/ZUNGHR) Generate unitary transformation matrix from reduction to Hessenberg form determined by F08NSF D4c1b3 Other F08LFF (SGBBRD/DGBBRD) Reduction of real rectangular band matrix to upper bidiagonal form F08LFF (CGBBRD/ZGBBRD) Reduction of complex rectangular band matrix to upper bidiagonal form F08LFF (Reduction to standard form, generalized real symmetric-definite banded eigenproblem F08SEF (SSYGST/DSYGST) Reduction to standard form of real symmetric-definite general symmetr		F08GEF	(SSPTRD/DSPTRD) Orthogonal reduction of real symmetric matrix to symmetric
F08GSF (CHPTRD/ZHPTRD) Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form, packed storage (CUPGTR/ZUPGTR) Generate unitary transformation matrix from reduction to tridiagonal form determined by F08GSF F08HSF (SSBTRD/DSBTRD) Orthogonal reduction of real symmetric band matrix to symmetric tridiagonal form F08HSF (SGEHRD/ZHBTRD) Unitary reduction of complex Hermitian band matrix to real symmetric tridiagonal form F08NFF (SGEHRD/DGEHRD) Orthogonal reduction of real general matrix to upper Hessenberg form F08NFF (SGEHRD/DGEHRD) Orthogonal reduction of real general matrix to upper Hessenberg form determined by F08NEF F08NSF (CGEHRD/ZGEHRD) Unitary reduction of complex general matrix to upper Hessenberg form determined by F08NEF (CGEHRD/ZGEHRD) Unitary reduction of complex general matrix to upper Hessenberg form F08NFF (CGEHRD/ZGEHRD) Unitary reduction of complex general matrix to upper Hessenberg form determined by F08NSF D4c1b3 Other F08LSF (SGBBRD/DGBBRD) Reduction of real rectangular band matrix to upper bidiagonal form F08LSF (CGBBRD/ZGBBRD) Reduction of complex rectangular band matrix to upper bidiagonal form F01BVF Reduction to standard form, generalized real symmetric-definite banded eigenproblem F08SEF (SSYGST/DSYGST) Reduction to standard form of real symmetric-definite general general general symmetric-definite general general symmetric-definite general		F08GFF	(SOPGTR/DOPGTR) Generate orthogonal transformation matrix from reduction
F08GFF CUPGTR/ZUPGTR) Generate unitary transformation matrix from reduction to tridiagonal form determined by F08GSF		F08GSF	(CHPTRD/ZHPTRD) Unitary reduction of complex Hermitian matrix to real
POSSEF (SSBTRD/DSBTRD) Orthogonal reduction of real symmetric band matrix to symmetric tridiagonal form (CHBTRD/ZHBTRD) Unitary reduction of complex Hermitian band matrix to real symmetric tridiagonal form		F08GTF	(CUPGTR/ZUPGTR) Generate unitary transformation matrix from reduction to
D4c1b2 Hessenberg F08NFF (SGEHRD/DGEHRD) Orthogonal reduction of real general matrix to upper Hessenberg form F08NFF (SORGHR/DORGHR) Generate orthogonal transformation matrix from reduction to Hessenberg form determined by F08NEF F08NFF (CGEHRD/ZGEHRD) Unitary reduction of complex general matrix to upper Hessenberg form (CUNGHR/ZUNGHR) Generate unitary transformation matrix from reduction to Hessenberg form determined by F08NSF D4c1b3 Other F08LEF (SGBBRD/DGBBRD) Reduction of real rectangular band matrix to upper bidiagonal form F08LEF (CGBBRD/ZGBBRD) Reduction of complex rectangular band matrix to upper bidiagonal form F08LEF (SGBBRD/ZGBBRD) Reduction of complex rectangular band matrix to upper bidiagonal form F08LEF (SGBBRD/ZGBBRD) Reduction of complex rectangular band matrix to upper bidiagonal form F08LEF (SGBBRD/ZGBBRD) Reduction of complex rectangular band matrix to upper bidiagonal form F08LEF (SGBBRD/ZGBBRD) Reduction of complex rectangular band matrix to upper bidiagonal form F08LEF (SSEMERD/ZGBBRD) Reduction of complex rectangular band matrix to upper bidiagonal form F08LEF (SSEMERD/ZGBBRD) Reduction of complex rectangular band matrix to upper bidiagonal form F08LEF (SSEMERD/ZGBBRD) Reduction of complex rectangular band matrix to upper bidiagonal form		F08HEF	(SSBTRD/DSBTRD) Orthogonal reduction of real symmetric band matrix to
D4c1b2 Hessenberg F08NEF (SGEHRD/DGEHRD) Orthogonal reduction of real general matrix to upper Hessenberg form F08NFF (SORGHR/DORGHR) Generate orthogonal transformation matrix from reduction to Hessenberg form determined by F08NEF F08NSF (CGEHRD/ZGEHRD) Unitary reduction of complex general matrix to upper Hessenberg form (CUNGHR/ZUNGHR) Generate unitary transformation matrix from reduction to Hessenberg form determined by F08NSF D4c1b3 Other F08LEF (SGBBRD/DGBBRD) Reduction of real rectangular band matrix to upper bidiag- onal form F08LSF (CGBBRD/ZGBBRD) Reduction of complex rectangular band matrix to upper bidiag- onal form F01BVF Reduction to standard form, generalized real symmetric-definite banded eigenproblem F08SEF (SSYGST/DSYGST) Reduction to standard form of real symmetric-definite gener-		F08HSF	(CHBTRD/ZHBTRD) Unitary reduction of complex Hermitian band matrix to real
F08NFF (SGEHRD/DGEHRD) Orthogonal reduction of real general matrix to upper Hessenberg form F08NFF (SORGHR/DORGHR) Generate orthogonal transformation matrix from reduction to Hessenberg form determined by F08NEF F08NSF (CGEHRD/ZGEHRD) Unitary reduction of complex general matrix to upper Hessenberg form F08NTF (CUNGHR/ZUNGHR) Generate unitary transformation matrix from reduction to Hessenberg form determined by F08NSF D4c1b3 Other F08LEF (SGBBRD/DGBBRD) Reduction of real rectangular band matrix to upper bidiagonal form F08LSF (CGBBRD/ZGBBRD) Reduction of complex rectangular band matrix to upper bidiagonal form F08LSF (CGBBRD/ZGBBRD) Reduction of complex rectangular band matrix to upper bidiagonal form F01BVF Reduction to standard form, generalized real symmetric-definite banded eigenproblem F08SEF (SSYGST/DSYGST) Reduction to standard form of real symmetric-definite general general matrix to upper bidiagonal form	D. 41.5	77 '	symmetric tridiagonal form
FORMSF (SORGHR/DORGHR) Generate orthogonal transformation matrix from reduction to Hessenberg form determined by FORNEF FORMSF (CGEHRD/ZGEHRD) Unitary reduction of complex general matrix to upper Hessenberg form (CUNGHR/ZUNGHR) Generate unitary transformation matrix from reduction to Hessenberg form determined by FORNSF Other FORLEF (SGBBRD/DGBBRD) Reduction of real rectangular band matrix to upper bidiagonal form (CGBBRD/ZGBBRD) Reduction of complex rectangular band matrix to upper bidiagonal form FORLEF (Standardize problem FOIBVF Reduction to standard form, generalized real symmetric-definite banded eigenproblem FOSSEF (SSYGST/DSYGST) Reduction to standard form of real symmetric-definite generalized real symmetric-definite genera	D4c1b2	0	, , , ,
FORMSF (CGEHRD/ZGEHRD) Unitary reduction of complex general matrix to upper Hessenberg form (CUNGHR/ZUNGHR) Generate unitary transformation matrix from reduction to Hessenberg form determined by F08NSF D4c1b3 Other FO8LEF (SGBBRD/DGBBRD) Reduction of real rectangular band matrix to upper bidiagonal form FO8LSF (CGBBRD/ZGBBRD) Reduction of complex rectangular band matrix to upper bidiagonal form CGBBRD/ZGBBRD) Reduction of complex rectangular band matrix to upper bidiagonal form FO1BVF Reduction to standard form, generalized real symmetric-definite banded eigenproblem FO8SEF (SSYGST/DSYGST) Reduction to standard form of real symmetric-definite generalized real symme		F08NFF	(SORGHR/DORGHR) Generate orthogonal transformation matrix from reduction
Poser Form the semberg form determined by Formation matrix from reduction to Hessenberg form determined by Formation by Formation matrix from reduction to Hessenberg form determined by Formation matrix from reduction to the Hessenberg form determined by Formation matrix from reduction to real rectangular band matrix to upper bidiagonal form Formation Formation matrix from reduction to real rectangular band matrix to upper bidiagonal form Formation Formation matrix from reduction to real rectangular band matrix to upper bidiagonal form Formation Formation matrix from reduction to real rectangular band matrix to upper bidiagonal form Formation Formation matrix from reduction to real rectangular band matrix to upper bidiagonal form Formation Formation Formation matrix from reduction to real rectangular band matrix to upper bidiagonal form Formation Formation Formation Formation matrix from reduction to real rectangular band matrix to upper bidiagonal form Formation Fo		FO8NSF	(CGEHRD/ZGEHRD) Unitary reduction of complex general matrix to upper
Other F08LEF (SGBBRD/DGBBRD) Reduction of real rectangular band matrix to upper bidiagonal form F08LSF (CGBBRD/ZGBBRD) Reduction of complex rectangular band matrix to upper bidiagonal form D4c1c Standardize problem F01BVF Reduction to standard form, generalized real symmetric-definite banded eigenproblem F08SEF (SSYGST/DSYGST) Reduction to standard form of real symmetric-definite generalized real symmetric-definite g		FOSNTF	(CUNGHR/ZUNGHR) Generate unitary transformation matrix from reduction to
F08LEF (SGBBRD/DGBBRD) Reduction of real rectangular band matrix to upper bidiagonal form F08LSF (CGBBRD/ZGBBRD) Reduction of complex rectangular band matrix to upper bidiagonal form D4c1c Standardize problem F01BVF Reduction to standard form, generalized real symmetric-definite banded eigenproblem F08SEF (SSYGST/DSYGST) Reduction to standard form of real symmetric-definite generalized real symmetric-definite generaliz	D4c1b3	Other	ressencerg form determined by POONSE
F08LSF (CGBBRD/ZGBBRD) Reduction of complex rectangular band matrix to upper bidiagonal form Standardize problem F01BVF Reduction to standard form, generalized real symmetric-definite banded eigenproblem F08SEF (SSYGST/DSYGST) Reduction to standard form of real symmetric-definite generalized real symmetric-definite	210150		, , ,
D4c1c Standardize problem F01BVF Reduction to standard form, generalized real symmetric-definite banded eigenproblem F08SEF (SSYGST/DSYGST) Reduction to standard form of real symmetric-definite gener-		F08LSF	(CGBBRD/ZGBBRD) Reduction of complex rectangular band matrix to upper
F01BVF Reduction to standard form, generalized real symmetric-definite banded eigenproblem F08SEF (SSYGST/DSYGST) Reduction to standard form of real symmetric-definite gener-	D4c1c	Standardize prob	
FOSSEF (SSYGST/DSYGST) Reduction to standard form of real symmetric-definite gener-		-	Reduction to standard form, generalized real symmetric-definite banded
		F08SEF	(SSYGST/DSYGST) Reduction to standard form of real symmetric-definite gener-

GAMS.12 [NP3445/2/pdf]

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	B factorized by ic-definite genked storage, B emitian-definite eked storage, B ded generalized has the same ded generalized has the same are of real symors of complex rs of real sym-
FOSTEF (SSPCST/DSPGST) Reduction to standard form of real symmetric realized eigenproblem $Ax = \lambda Bx$, $ABx = \lambda x$ or $BAx = \lambda x$, par factorized by F07GDF (CHPCST/ZHPGST) Reduction to standard form of complex Here generalized eigenproblem $Ax = \lambda Bx$, $ABx = \lambda x$ or $BAx = \lambda x$, par factorized by F07GRF (SSRGST) SSGST). Reduction of real symmetric-definite band eigenproblem $Ax = \lambda Bx$ to standard form $Cy = \lambda y$, such that C bandwidth as A form of complex Hermitian-definite band eigenproblem $Ax = \lambda Bx$ to standard form $Cy = \lambda y$, such that C bandwidth as A form of complex Hermitian-definite band eigenproblem $Ax = \lambda Bx$ to standard form $Cy = \lambda y$, such that C bandwidth as A form of the such advance of the such as A to standard form $Cy = \lambda y$, such that C bandwidth as A form of the such as A to standard form $Cy = \lambda y$, such that C bandwidth as A form of the such as A to standard form $Cy = \lambda y$, such that C bandwidth as A form of the such as A to standard form $Cy = \lambda y$, such that C bandwidth as A form of the such as A to standard form $Cy = \lambda y$, such that C bandwidth as A form of the such	ked storage, B rmitian-definite cked storage, B red generalized T has the same ded generalized T has the same rs of real sym- ors of complex rs of real sym-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	eked storage, B ed generalized C has the same ded generalized C has the same ars of real sym- ors of complex rs of real sym-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C has the same ded generalized C has the same ars of real sym- ors of complex rs of real sym-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Thas the same are of real symors of complex real sym-
D4c2 D4c2a Tridiagonal FOBFCF (SYEVD/DSYEVD) All eigenvalues and optionally all eigenvector metric matrix, using divide and conquer FOBFQF (CHEEVD/ZHEEVD) All eigenvalues and optionally all eigenvector metric matrix, using divide and conquer FOBGQF (SSPEVD/DSPEVD) All eigenvalues and optionally all eigenvector metric matrix, packed storage, using divide and conquer FOBGQF (CHPEVD/ZHPEVD) All eigenvalues and optionally all eigenvector metric matrix, packed storage, using divide and conquer (SSTEVD/DSTEVD) All eigenvalues and optionally all eigenvector metric tridiagonal matrix, using divide and conquer FOBJEF (SSTEQR/DSTEQR) All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from real symmetric matrix using implicit QL or Qc FOBJEF (SSTERP/DSTERF) All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from real symmetric positive-definite tridiagonal matrix, reduced from complex Hermitian matrix, using implicit QL FOBJUF (CSTEQR/ZSTEQR) All eigenvalues and eigenvectors of real symmetric tridiagonal matrix reduced from complex Hermitian matrix FOBPSF (CHSEQR/DHSEQR) Eigenvalues and Schur factorization of real up matrix reduced from real general matrix FOBSSF (CHSEQR/ZHSEQR) Eigenvalues and Schur factorization of compsender matrix reduced from complex general matrix FOBJKF (CSTEIN/DSTEIN) Selected eigenvectors of real symmetric tridiag inverse iteration, storing eigenvectors in real array (CSTEIN/ZSTEIN) Selected eigenvectors of real symmetric tridiag inverse iteration, storing eigenvectors in complex array (SHSEIN/DHSEIN) Selected eigenvectors of real up matrix by inverse iteration	ors of complex
POSCE Tridiagonal FOSFCF (SSYEVD/DSYEVD) All eigenvalues and optionally all eigenvector metric matrix, using divide and conquer (CHEEVD/ZHEEVD) All eigenvalues and optionally all eigenvector metric matrix, using divide and conquer FOSCGF (SSPEVD/DSPEVD) All eigenvalues and optionally all eigenvector metric matrix, packed storage, using divide and conquer (CHPEVD/ZHPEVD) All eigenvalues and optionally all eigenvector metric matrix, packed storage, using divide and conquer (SSTEVD/DSTEVD) All eigenvalues and optionally all eigenvector metric tridiagonal matrix, packed storage, using divide and conquer (SSTEVD/DSTEVD) All eigenvalues and optionally all eigenvector metric tridiagonal matrix, using divide and conquer (SSTER/DSTEQR) All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from real symmetric matrix using implicit QL or QR (SSTER/DSTERF) All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from real symmetric tridiagonal matrix, reduced from real symmetric tridiagonal matrix, reduced from complex Hermitian matrix, using implicit QL or QR FOSJSF (CSTEQR/ZSTEQR) All eigenvalues and eigenvectors of real symmetric, reduced from complex Hermitian matrix, using implicit QL or QR FOSJSF (CFTEQR/ZSTEQR) All eigenvalues and eigenvectors of real symmetric, reduced from complex Hermitian matrix, using implicit QL or QR FOSPSF (SHSEQR/DHSEQR) Eigenvalues and Schur factorization of real up matrix reduced from real general matrix FOSPSF (SHSEQR/DHSEQR) Eigenvalues and Schur factorization of real up matrix reduced from complex general matrix FOSJKF (SSTEIN/DSTEIN) Selected eigenvectors of real symmetric tridiag inverse iteration, storing eigenvectors in real array FOSPSF (SHSEIN/DHSEIN) Selected right and/or left eigenvectors of real up matrix by inverse iteration FOSPSF (SHSEIN/JHSEIN) Selected right and/or left eigenvectors of real up matrix by inverse iteration	ors of complex
F08FCF (SSYEVD/DSYEVD) All eigenvalues and optionally all eigenvector metric matrix, using divide and conquer F08GCF (CHEEVD/ZHEEVD) All eigenvalues and optionally all eigenvector Hermitian matrix, using divide and conquer F08GCF (SSPEVD/DSPEVD) All eigenvalues and optionally all eigenvector metric matrix, packed storage, using divide and conquer F08GCF (CHPEVD/ZHPEVD) All eigenvalues and optionally all eigenvector Hermitian matrix, packed storage, using divide and conquer F08JCF (SSTECP/DSTEVD) All eigenvalues and optionally all eigenvector metric tridiagonal matrix, using divide and conquer F08JFF (SSTECR/DSTEQR) All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from real symmetric matrix using implicit QL or Qc F08JFF (SSTERF/DSTERF) All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from complex Hermitian matrix, using implicit QL or QR F08JFF (CSTEQR/ZSTEQR) All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from complex Hermitian matrix using implicit QL or QR F08JFF (SPEQR/ZPTEQR) All eigenvalues and eigenvectors of real symmetric tridiagonal matrix reduced from complex Hermitian matrix F08JFF (SHSEQR/DHSEQR) Eigenvalues and Schur factorization of real up matrix reduced from real general matrix F08PFF (SHSEQR/ENSEQR) Eigenvalues and Schur factorization of real up matrix reduced from real general matrix F08JFF (SHSEQR/ENSEQR) Eigenvalues and Schur factorization of real up matrix reduced from complex general matrix F08JFF (SHSEQR/ENSEQR) Eigenvalues and Schur factorization of complex general matrix reduced from real general matrix F08JFF (SHSEQR/ENSEQR) Eigenvalues and Schur factorization of real up matrix peduced from real general matrix F08JFF (SHSEQR/ENSEQR) Eigenvalues and Schur fact	ors of complex
metric matrix, using divide and conquer (CHEEVD/ZHEEVD) All eigenvalues and optionally all eigenvect Hermitian matrix, using divide and conquer (SSPEVD/DSPEVD) All eigenvalues and optionally all eigenvector metric matrix, packed storage, using divide and conquer (CHEEVD/ZHEEVD) All eigenvalues and optionally all eigenvector metric matrix, packed storage, using divide and conquer (FOBJGF (CHEPVD/ZHEPVD)) All eigenvalues and optionally all eigenvector metric tridiagonal matrix, using divide and conquer (SSTEVD/DSTEVD) All eigenvalues and optionally all eigenvector metric tridiagonal matrix, using divide and conquer (SSTEQR/DSTEQR) All eigenvalues and eigenvectors of real symmetric robustic tridiagonal matrix, reduced from real symmetric tridiagonal matrix, reduced from real symmetric tridiagonal matrix, reduced from real symmetric positive-definite tridiagonal matrix, reduced from real symmetric tridiagonal matrix, reduced from complex Hermitian matrix, using implicit QL (CPTEQR/ZPTEQR) All eigenvalues and eigenvectors of real symmetric, reduced from complex Hermitian matrix, using implicit QL (CPTEQR/ZPTEQR) All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from complex Hermitian probability and effinite tridiagonal matrix, reduced from complex Hermitian probability and effinite tridiagonal matrix reduced from complex Hermitian probability and effinite tridiagonal matrix reduced from complex general matrix (CHSEQR/ZHSEQR) Eigenvalues and Schur factorization of real upmatrix reduced from complex general matrix FORPSF (SHSEQR/DHSEQR) Eigenvalues and Schur factorization of real upmatrix reduced from complex general matrix (CHSEQR/ZHSEQR) Eigenvalues and Schur factorization of composence general matrix reduced from complex general matrix FORMSF (STEIN/DSTEIN) Selected eigenvectors of real symmetric tridiag inverse iteration, storing eigenvectors in real array FORMSF (STEIN/DHSEIN) Selected right and/or left eigenvectors of real upmatrix by inverse iteration	ors of complex
Hermitian matrix, using divide and conquer (SSPEVD/DSFEVD) All eigenvalues and optionally all eigenvector metric matrix, packed storage, using divide and conquer (CHPEVD/ZHPEVD) All eigenvalues and optionally all eigenvector Hermitian matrix, packed storage, using divide and conquer F08JCF (SSTEVD/DSTEVD) All eigenvalues and optionally all eigenvector metric tridiagonal matrix, using divide and conquer F08JEF (SSTEVD/DSTEVD) All eigenvalues and optionally all eigenvector metric tridiagonal matrix, using divide and conquer F08JEF (SSTEQR/DSTEQR) All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from real symmetric tridiagonal natrix, reduced from real symmetric tridiagonal natrix, reduced from real symmetric positive-de (SPTEQR/DPTEQR) All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from real symmetric positive-de (SSTEBZ/DSTEBZ) Selected eigenvalues of real symmetric tridiagonal matrix, reduced from complex Hermitian matrix, using implicit QL or QR F08JEF (CSTEQR/ZSTEQR) All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from complex Hermitian matrix, using implicit QL or QR (CPTEQR/ZPTEQR) All eigenvalues and eigenvectors of real symmetric tridiagonal matrix reduced from real general matrix CHEQR/ZHTEQR) Eigenvalues and Schur factorization of real up matrix reduced from real general matrix F08PSF (SHSEQR/ZHSEQR) Eigenvalues and Schur factorization of composent promitive reduced from complex general matrix F08JKF (STEIN/DSTEIN) Selected eigenvectors of real symmetric tridiagonal matrix reduced from complex general matrix F08JKF (SSTEIN/DSTEIN) Selected eigenvectors of real symmetric tridiagonal matrix by inverse iteration normalex array F08JKF (SHSEIN/DHSEIN) Selected right and/or left eigenvectors of real up matrix by inverse iteration	rs of real sym-
metric matrix, packed storage, using divide and conquer FO8GQF (CHPEVD/ZHPEVD) All eigenvalues and optionally all eigenvect Hermitian matrix, packed storage, using divide and conquer FO8JCF (SSTEVD/DSTEVD) All eigenvalues and optionally all eigenvector metric tridiagonal matrix, using divide and conquer FO8JEF (SSTEQR/DSTEQR) All eigenvalues and eigenvectors of real symmetric reduced from real symmetric matrix using implicit QL or Q FO8JFF (SSTERF/DSTERF) All eigenvalues of real symmetric tridiagonal matrix, reduced from real symmetric positive-de definite tridiagonal matrix, reduced from real symmetric tridiag bisection FO8JSF (SSTEBZ/DSTEBZ) Selected eigenvalues of real symmetric tridiag bisection FO8JSF (CSTEQR/ZSTEQR) All eigenvalues and eigenvectors of real symmetrix, reduced from complex Hermitian matrix, using implicit QL FO8JUF (CPTEQR/ZSTEQR) All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from complex Hermitian patrix EVERCED FOR STEPPORTE (SHSEQR) All eigenvalues and Schur factorization of real up matrix FO8PSF (CHSEQR/ZHSEQR) Eigenvalues and Schur factorization of real up matrix reduced from real general matrix FO8PSF (CHSEQR/ZHSEQR) Eigenvalues and Schur factorization of composenberg matrix reduced from complex general matrix FO8JKF (SSTEIN/DSTEIN) Selected eigenvectors of real symmetric tridiag inverse iteration, storing eigenvectors in complex array FO8PKF (SHSEIN/DHSEIN) Selected eigenvectors of real symmetric tridiag inverse iteration, storing eigenvectors in complex array FO8PKF (CHSEIN/ZHSEIN) Selected right and/or left eigenvectors of real up matrix by inverse iteration	J
Hermitian matrix, packed storage, using divide and conquer (SSTEVD/DSTEVD) All eigenvalues and optionally all eigenvector metric tridiagonal matrix, using divide and conquer F08JFF (SSTEQR/DSTEQR) All eigenvalues and eigenvectors of real symmetric matrix, reduced from real symmetric matrix using implicit QL or QR F08JFF (SSTERF/DSTERF) All eigenvalues of real symmetric tridiagonal matrix, reduced from real symmetric tridiagonisection F08JJF (SSTEBZ/DSTEBZ) Selected eigenvalues of real symmetric tridiagonisection F08JJF (CSTEQR/ZSTEQR) All eigenvalues and eigenvectors of real symmetrix, reduced from complex Hermitian matrix, using implicit QL (CPTEQR/ZPTEQR) All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from complex Hermitian matrix CCPTEQR/ZPTEQR) All eigenvalues and eigenvectors of real symmetric tridiagonal matrix reduced from complex Hermitian matrix (CPTEQR/ZPTEQR) Eigenvalues and Schur factorization of real up matrix reduced from real general matrix F08PFF (SHSEQR/ZHSEQR) Eigenvalues and Schur factorization of composent matrix reduced from complex general matrix (CHSEQR/ZHSEIN) Selected eigenvectors of real symmetric tridiagonal matrix by inverse iteration F08PJF (SHSEIN/ZHSEIN) Selected right and/or left eigenvectors of real up matrix by inverse iteration F08PJF (CHSEIN/ZHSEIN) Selected right and/or left eigenvectors of real up matrix by inverse iteration	ors of complex
metric tridiagonal matrix, using divide and conquer F08JFF (SSTEQR/DSTEQR) All eigenvalues and eigenvectors of real symmetric matrix, reduced from real symmetric matrix using implicit QL or Q (SSTERF/DSTERF) All eigenvalues of real symmetric tridiagonal matrix, reduced from real symmetric tridiagonal matrix, reduced from real symmetric positive-de (SPTEQR/DPTEQR) All eigenvalues and eigenvectors of real symmetric positive-de (SSTEBZ/DSTEBZ) Selected eigenvalues of real symmetric tridiagonal matrix, reduced from real symmetric tridiagonal matrix, reduced from complex Hermitian matrix, using implicit QL (CPTEQR/ZPTEQR) All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from complex Hermitian matrix matrix reduced from complex Hermitian properties (SHSEQR/DHSEQR) Eigenvalues and Schur factorization of real up matrix reduced from real general matrix F08PSF (SHSEQR/DHSEQR) Eigenvalues and Schur factorization of composenberg matrix reduced from complex general matrix FO8PSF (SSTEIN/DSTEIN) Selected eigenvectors of real symmetric tridiagon inverse iteration, storing eigenvectors in real array F08JXF (SSTEIN/DSTEIN) Selected eigenvectors of real symmetric tridiagon inverse iteration, storing eigenvectors in complex array F08PXF (SHSEIN/DHSEIN) Selected right and/or left eigenvectors of real up matrix by inverse iteration F08PXF (CHSEIN/ZHSEIN) Selected right and/or left eigenvectors of real up matrix by inverse iteration	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	rs of real sym-
F08JFF (SSTERF/DSTERF) All eigenvalues of real symmetric tridiagonal mariant of QL or QR F08JGF (SPTEQR/DPTEQR) All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from real symmetric positive-decompositive-	_
definite tridiagonal matrix, reduced from real symmetric positive-definite tridiagonal matrix, reduced from real symmetric tridiagonal bisection F08JSF (CSTEQR/ZSTEQR) All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from complex Hermitian matrix, using implicit QL (CPTEQR/ZPTEQR) All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from complex Hermitian partix (CPTEQR/ZPTEQR) Eigenvalues and Schur factorization of real upon matrix reduced from real general matrix F08PSF (SHSEQR/DHSEQR) Eigenvalues and Schur factorization of compassenberg matrix reduced from complex general matrix Form eigenvectors from eigenvalues Form eigenvectors from eigenvalues F08JKF (SSTEIN/DSTEIN) Selected eigenvectors of real symmetric tridiagon inverse iteration, storing eigenvectors in complex array F08PKF (SHSEIN/ZSTEIN) Selected eigenvectors of real symmetric tridiagon inverse iteration, storing eigenvectors in complex array F08PKF (SHSEIN/DHSEIN) Selected right and/or left eigenvectors of real upon matrix by inverse iteration F08PXF (CHSEIN/ZHSEIN) Selected right and/or left eigenvectors of real upon trivial tridiagonal matrix by inverse iteration Hessenberg matrix by inverse iteration	
D4c2b Hessenberg FO8JSF (CSTEQR/ZSTEQR) All eigenvalues and eigenvectors of real symmetrix, reduced from complex Hermitian matrix, using implicit QL FO8JUF (CPTEQR/ZPTEQR) All eigenvalues and eigenvectors of real symmetrix definite tridiagonal matrix, reduced from complex Hermitian produced from complex Hermitian produced from real general matrix Hessenberg FO8PEF (SHSEQR/DHSEQR) Eigenvalues and Schur factorization of real upmatrix reduced from real general matrix FO8PSF (CHSEQR/ZHSEQR) Eigenvalues and Schur factorization of composenberg matrix reduced from complex general matrix FO8JKF (SSTEIN/DSTEIN) Selected eigenvectors of real symmetric tridiagen inverse iteration, storing eigenvectors in real array FO8JKF (STEIN/ZSTEIN) Selected eigenvectors of real symmetric tridiagen inverse iteration, storing eigenvectors in complex array FO8PKF (SHSEIN/DHSEIN) Selected right and/or left eigenvectors of real upmatrix by inverse iteration FO8PXF (CHSEIN/ZHSEIN) Selected right and/or left eigenvectors of real upmatrix by inverse iteration	
matrix, reduced from complex Hermitian matrix, using implicit QL (CPTEQR/ZPTEQR) All eigenvalues and eigenvectors of real symmote definite tridiagonal matrix, reduced from complex Hermitian promatrix Hessenberg F08PEF (SHSEQR/DHSEQR) Eigenvalues and Schur factorization of real upmatrix reduced from real general matrix F08PSF (CHSEQR/ZHSEQR) Eigenvalues and Schur factorization of composenberg matrix reduced from complex general matrix Form eigenvectors from eigenvalues F08JKF (SSTEIN/DSTEIN) Selected eigenvectors of real symmetric tridiaginverse iteration, storing eigenvectors in real array F08JKF (CSTEIN/ZSTEIN) Selected eigenvectors of real symmetric tridiaginverse iteration, storing eigenvectors in complex array F08PKF (SHSEIN/DHSEIN) Selected right and/or left eigenvectors of real upmatrix by inverse iteration F08PXF (CHSEIN/ZHSEIN) Selected right and/or left eigenvectors of real upmatrix by inverse iteration	
P08JUF (CPTEQR/ZPTEQR) All eigenvalues and eigenvectors of real symmatrix D4c2b Hessenberg F08PEF (SHSEQR/DHSEQR) Eigenvalues and Schur factorization of real upmatrix reduced from real general matrix F08PSF (CHSEQR/ZHSEQR) Eigenvalues and Schur factorization of composenberg matrix reduced from complex general matrix F08PSF (CHSEQR/ZHSEQR) Eigenvalues and Schur factorization of composenberg matrix reduced from complex general matrix F08JKF (SSTEIN/DSTEIN) Selected eigenvectors of real symmetric tridiage inverse iteration, storing eigenvectors in real array F08JKF (CSTEIN/ZSTEIN) Selected eigenvectors of real symmetric tridiage inverse iteration, storing eigenvectors in complex array F08PKF (SHSEIN/DHSEIN) Selected right and/or left eigenvectors of real upmatrix by inverse iteration F08PXF (CHSEIN/ZHSEIN) Selected right and/or left eigenvectors of real upmatrix by inverse iteration	_
D4c2b Hessenberg F08PEF (SHSEQR/DHSEQR) Eigenvalues and Schur factorization of real up matrix reduced from real general matrix F08PSF (CHSEQR/ZHSEQR) Eigenvalues and Schur factorization of composenberg matrix reduced from complex general matrix D4c3 Form eigenvectors from eigenvalues F08JKF (SSTEIN/DSTEIN) Selected eigenvectors of real symmetric tridiage inverse iteration, storing eigenvectors of real symmetric tridiage inverse iteration, storing eigenvectors in complex array (SHSEIN/DHSEIN) Selected right and/or left eigenvectors of real up matrix by inverse iteration F08PXF (CHSEIN/ZHSEIN) Selected right and/or left eigenvectors of real up matrix by inverse iteration	metric positive-
F08PEF (SHSEQR/DHSEQR) Eigenvalues and Schur factorization of real up matrix reduced from real general matrix F08PSF (CHSEQR/ZHSEQR) Eigenvalues and Schur factorization of comp senberg matrix reduced from complex general matrix D4c3 Form eigenvectors from eigenvalues F08JKF (SSTEIN/DSTEIN) Selected eigenvectors of real symmetric tridiag inverse iteration, storing eigenvectors in real array F08JKF (CSTEIN/ZSTEIN) Selected eigenvectors of real symmetric tridiag inverse iteration, storing eigenvectors of real symmetric tridiag inverse iteration, storing eigenvectors in complex array F08PKF (SHSEIN/DHSEIN) Selected right and/or left eigenvectors of real up matrix by inverse iteration F08PXF (CHSEIN/ZHSEIN) Selected right and/or left eigenvectors of thesenberg matrix by inverse iteration	
matrix reduced from real general matrix F08PSF (CHSEQR/ZHSEQR) Eigenvalues and Schur factorization of composenberg matrix reduced from complex general matrix Form eigenvectors from eigenvalues F08JKF (SSTEIN/DSTEIN) Selected eigenvectors of real symmetric tridiag inverse iteration, storing eigenvectors in real array F08JXF (CSTEIN/ZSTEIN) Selected eigenvectors of real symmetric tridiag inverse iteration, storing eigenvectors of real symmetric tridiag inverse iteration, storing eigenvectors in complex array F08PKF (SHSEIN/DHSEIN) Selected right and/or left eigenvectors of real up matrix by inverse iteration F08PXF (CHSEIN/ZHSEIN) Selected right and/or left eigenvectors of thessenberg matrix by inverse iteration	** 1
senberg matrix reduced from complex general matrix Form eigenvectors from eigenvalues FO8JKF (SSTEIN/DSTEIN) Selected eigenvectors of real symmetric tridiag inverse iteration, storing eigenvectors in real array FO8JKF (CSTEIN/ZSTEIN) Selected eigenvectors of real symmetric tridiag inverse iteration, storing eigenvectors of real symmetric tridiag inverse iteration, storing eigenvectors in complex array FO8PKF (SHSEIN/DHSEIN) Selected right and/or left eigenvectors of real up matrix by inverse iteration FO8PXF (CHSEIN/ZHSEIN) Selected right and/or left eigenvectors of thessenberg matrix by inverse iteration	
Form eigenvectors from eigenvalues FO8JKF (SSTEIN/DSTEIN) Selected eigenvectors of real symmetric triding inverse iteration, storing eigenvectors in real array FO8JKF (CSTEIN/ZSTEIN) Selected eigenvectors of real symmetric triding inverse iteration, storing eigenvectors in complex array FO8PKF (SHSEIN/DHSEIN) Selected right and/or left eigenvectors of real up matrix by inverse iteration FO8PKF (CHSEIN/ZHSEIN) Selected right and/or left eigenvectors of real up matrix by inverse iteration	lex upper Hes-
inverse iteration, storing eigenvectors in real array F08JXF (CSTEIN/ZSTEIN) Selected eigenvectors of real symmetric tridiag inverse iteration, storing eigenvectors in complex array F08PXF (SHSEIN/DHSEIN) Selected right and/or left eigenvectors of real up matrix by inverse iteration F08PXF (CHSEIN/ZHSEIN) Selected right and/or left eigenvectors of thesenberg matrix by inverse iteration	
inverse iteration, storing eigenvectors in complex array F08PKF (SHSEIN/DHSEIN) Selected right and/or left eigenvectors of real up matrix by inverse iteration F08PXF (CHSEIN/ZHSEIN) Selected right and/or left eigenvectors of Hessenberg matrix by inverse iteration	
F08PKF (SHSEIN/DHSEIN) Selected right and/or left eigenvectors of real up matrix by inverse iteration F08PXF (CHSEIN/ZHSEIN) Selected right and/or left eigenvectors of thesenberg matrix by inverse iteration	onal matrix by
FO8PXF (CHSEIN/ZHSEIN) Selected right and/or left eigenvectors of thesenberg matrix by inverse iteration	per Hessenberg
FOSQKF (STREVC/DTREVC) Left and right eigenvectors of real upper of matrix	complex upper
FOSQXF (CTREVC/ZTREVC) Left and right eigenvectors of complex up matrix	
D4c4 Back transform eigenvectors	quasi-triangular
F08FGF (SORMTR/DORMTR) Apply orthogonal transformation determine	quasi-triangular
F08FUF (CUNMTR/ZUNMTR) Apply unitary transformation matrix of F08FSF	quasi-triangular oper triangular ed by F08FEF
F08GGF (SOPMTR/DOPMTR) Apply orthogonal transformation determine F08GUF (CUPMTR/ZUPMTR) Apply unitary transformation matrix of F08GSF	quasi-triangular oper triangular ed by F08FEF determined by
FO8NGF (SORMHR/DORMHR) Apply orthogonal transformation matrix from	quasi-triangular oper triangular ed by F08FEF determined by ed by F08GEF
Hessenberg form determined by F08NEF F08NJF (SGEBAK/DGEBAK) Transform eigenvectors of real balanced ma original matrix supplied to F08NHF	quasi-triangular oper triangular ed by F08FEF determined by ed by F08GEF determined by
F08NUF (CUNMHR/ZUNMHR) Apply unitary transformation matrix from Hessenberg form determined by F08NSF	quasi-triangular oper triangular ed by F08FEF determined by ed by F08GEF determined by om reduction to
FO8NWF (CGEBAK/ZGEBAK) Transform eigenvectors of complex balanced of original matrix supplied to F08NVF	quasi-triangular oper triangular ed by F08FEF determined by ed by F08GEF determined by om reduction to trix to those of

PORTS OR disconposition, Gram—Schmidt orthogonalization FOLOGY RO [actorization of real m by n upper trapezoidal matrix (m ≤ n) POLOGY RO [actorization of real m by n upper trapezoidal matrix (m ≤ n) Operations with orthogonal matrices, form rows of Q, after RQ factorization by POLOGY POLOGY RO [actorization of complex m by n upper trapezoidal matrix (m ≤ n) FOLOGY POLOGY RO [actorization of complex m by n upper trapezoidal matrix (m ≤ n) FOLOGY RO [actorization with unitary matrices, form rows of Q, after RQ factorization by FURDF FORDER F	D5	OR decomposition Cr	am-Schmidt orthogonalization
FOLIGY RQ factorization of real m by n matrix (m ≤ n) FOLIGY RQ Operations with orthogonal matrices, form rows of Q, after RQ factorization by FOLIGY RQ factorization of complex m by n upper trapezoidal matrix (m ≤ n) FOLIGY RQ factorization of complex m by n matrix (m ≤ n) FOLIGY Operations with unitary matrices, form rows of Q, after RQ factorization by FOLIGIF FOLIGY Operations with unitary matrices, form rows of Q, after RQ factorization by FOLIGIF FOLIGY QR factorization by sequence of plane rotations, real upper triangular matrix assumented by a full row FOGER QR or RQ factorization by sequence of plane rotations, real upper Hessenberg matrix assumented by a full row FOGER QR or RQ factorization by sequence of plane rotations, real upper triangular matrix form the sequence of plane rotations and the proper triangular matrix assumented by a full row FOGER QR or RQ factorization by sequence of plane rotations, real upper triangular matrix form the sequence of plane rotations and the proper full real real real real real real real re	Dэ	·	· ·
FORSE PORSE RQ factorization of complex m by n upper trapezoidal matrix (m ≤ n) FORSE RQ factorization of complex m by n matrix (m ≤ n) PORSE RQ factorization of complex m by n matrix (m ≤ n) Operations with unitary matrices, form rows of Q, after RQ factorization by FORSE FORSE ROWS of the RD (matrix forms of the Matrix forms of the RD) FORSE RG factorization by sequence of plane rotations, real upper triangular matrix augmented by a full row FORSE RG factorization by sequence of plane rotations, real upper Hessenberg RD (RD (factorization by sequence of plane rotations, real upper Hessenberg RD (RD (factorization by sequence of plane rotations, real upper triangular matrix profits RQ factorization by sequence of plane rotations, real upper triangular rotations RD (RD (factorization by sequence of plane rotations, real upper triangular, Z a sequence of plane rotations and RD (RD (factorization)) and real plane rotations, real upper triangular matrix RD (RD (factorization)) and real plane rotations, complex upper triangular matrix augmented by a full row FORSE QR (factorization) by sequence of plane rotations, complex upper Hessenberg matrix FORSE QR or RQ (factorization) by sequence of plane rotations, complex upper plane for RQ (RD (RD (RQ RD)) and RD (RD (RD (RD RD)) and RD (RD (RD			• • • • • • • • • • • • • • • • • • • •
FORBLE RQ factorization of complex m by n matrixs (for < n) FORBRE Operations with unitary matrices, form rows of Q, after RQ factorization by FORLE FORBLE Cram-Schmidt orthogonalisation of n vectors of order m FORGE QR factorization by sequence of plane rotations, real upper triangular matrix augmented by a full row FORGE RQ factorization by sequence of plane rotations, real upper Hessenberg matrix FORGE QR or RQ factorization by sequence of plane rotations, real upper Hessenberg matrix FORGE QR or RQ factorization by sequence of plane rotations, real upper spiked matrix FORGE QR or RQ factorization by sequence of plane rotations, real upper triangular. Z a cyclence of plane rotations of ZU, U real upper triangular. Z a cyclence of plane rotations of ZU, U real upper triangular. Z a form of the plane rotations of ZU, U real upper triangular matrix FORGE QR factorization by sequence of plane rotations, complex upper triangular matrix augmented by a full row FORGE QR factorization by sequence of plane rotations, complex upper Hessenberg matrix FORGE QR or RQ factorization by sequence of plane rotations, complex upper spiked matrix FORGE QR or RQ factorization by sequence of plane rotations, complex upper triangular, Z a sequence of plane rotations of UZ U. U complex upper triangular, Z a sequence of plane rotations FORGE QR PGCRP (DGCRP) QR factorization of real general rectangular matrix FORGE FORGE (SGNGMC) DGRAGE) Form all or part of orthogonal Q from QR factorization determined by FORAEF FORGE (SGNGMC) DGRAGE) Form all or part of orthogonal Q from QR factorization determined by FORAEF FORGE (SGNGMC) DGRAGE) Form all or part of orthogonal Qr from LQ factorization determined by FORAEF FORGE (SGNGMC) DGRAGE) Form all or part of orthogonal Qr from LQ factorization determined by FORAEF FORGE (SGNGMC) DGRAGE) Form all or part of orthogonal Qr from LQ factorization determined by FORAEF FORGE		F01QKF	
FOREY FOSAF Gram-Schmidt orthogonalisation of n vectors of order to update of real upper triangular matrix FOSQUF QR factorization by sequence of plane rotations, rank-1 update of real upper triangular matrix augmented by a full row FOSQUF QR or RQ factorization by sequence of plane rotations, real upper triangular matrix augmented by a full row FOSQUF QR or RQ factorization by sequence of plane rotations, real upper Hessenberg matrix FOSQUF FOSQUF QR or RQ factorization by sequence of plane rotations, real upper spiked matrix FOSQUF QR or RQ factorization of UZ or RQ factorization of ZU, U real upper triangular, Z a sequence of plane rotations, rank-1 update of complex upper triangular matrix FOSTGF QR factorization by sequence of plane rotations, complex upper triangular matrix augmented by a full row FOSTGF QR or RQ factorization by sequence of plane rotations, complex upper triangular matrix augmented by a full row FOSTGF QR or RQ factorization by sequence of plane rotations, complex upper triangular matrix FOSTGF QR or RQ factorization by sequence of plane rotations, complex upper triangular matrix FOSTGF QR or RQ factorization by sequence of plane rotations, complex upper triangular, Z a sequence of plane rotations of the proper triangular are sequence of plane rotations. FOSAFF FOSAF			
FOSAF Cram Schmidt orthogonalisation of a vectors of order m FOSGUF QR factorization by sequence of plane rotations, real-update of real upper triangular matrix augmented by a full row FOGGUF QR or RQ factorization by sequence of plane rotations, real upper Hessenberg matrix FOGGUF QR or RQ factorization by sequence of plane rotations, real upper Hessenberg matrix FOGGUF QR actorization of UZ or RQ factorizations, real-upper triangular, Z a sequence of plane rotations, real-upper triangular, Z a sequence of plane rotations, real-upper triangular matrix FOGGUF QR factorization by sequence of plane rotations, rank-1 update of complex upper triangular matrix augmented by a full row FOGGUF QR or RQ factorization by sequence of plane rotations, complex upper triangular matrix augmented by a full row FOGGUF QR or RQ factorization by sequence of plane rotations, complex upper triangular matrix POGGUF QR or RQ factorization by sequence of plane rotations, complex upper triangular matrix FOGGUF (Ractorization of UZ or RQ factorizations, complex upper triangular, Z Ractorization of UZ or RQ factorization of telemined by FOSAFF (SORGAP) DORGAP) PORGAPF or FOSAFF FOSAFF FOSAFF (SORGAP) PORGAPF PORGAPF or FOSAFF FOSAFF (SORGAP) PORGAPF PORGAPF OR FOSAFF FOSA			• • • • • • • • • • • • • • • • • • • •
POGGFF QR factorization by sequence of plane rotations, rank-1 update of real upper triangular matrix augmented by a full row augmented by a full row augmented by a full row part of the property of the prop			- · · · · · · · · · · · · · · · · · · ·
FORQUE FORQUE OF Reatorization by sequence of plane rotations, real upper triangular matrix augmented by a full row FORGER OR or RQ factorization by sequence of plane rotations, real upper Hessenberg matrix FORGER OR or RQ factorization by sequence of plane rotations, real upper piled matrix FORGER OR or RQ factorization by sequence of plane rotations, real upper spiked matrix FORGER OR or RQ factorization by sequence of plane rotations, rank-1 update of complex sequence of plane rotations, rank-1 update of complex upper triangular matrix augmented by a full row FORTER OR RQ factorization by sequence of plane rotations, complex upper spiked matrix FORTER OR RQ factorization by sequence of plane rotations, complex upper spiked matrix FORTER OR RQ factorization by sequence of plane rotations, complex upper spiked matrix FORTER OR RQ factorization by sequence of plane rotations, complex upper spiked matrix FORTER OR RQ factorization by sequence of plane rotations, complex upper spiked matrix FORTER OR RQ factorization by sequence of plane rotations, complex upper spiked matrix FORTER OR RQ factorization by sequence of plane rotations, complex upper spiked matrix FORTER OR RQ factorization by sequence of plane rotations, complex upper spiked matrix FORTER OR RQ factorization of Plane Rotations, complex upper spiked matrix FORTER OR RQ factorization of Plane Rotations, complex upper spiked matrix FORTER OR RQ factorization of Plane Rotations, complex upper spiked matrix FORTER OR RQ factorization of Plane Rotations, complex upper spiked matrix FORTER FORTER FORTER OR RATE OR Rate RQ			
FORERF QR or RQ factorization by sequence of plane rotations, real upper Hessenberg matrix FORETF QR or RQ factorization by sequence of plane rotations, real upper piked matrix FORETF QR factorization of UZ or RQ factorization of ZU, U real upper triangular, Z a sequence of plane rotations and the property of the p		•	
FORGRE QR or RQ factorization by sequence of plane rotations, real upper Hessenberg matrix FORGRE QR for RQ factorization of VZ or RQ factorization of UZ or RQ factorization by sequence of plane rotations, rank-1 update of complex upper triangular matrix FORTIF QR factorization by sequence of plane rotations, complex upper triangular matrix augmented by a full row FORTIF QR for RQ factorization by sequence of plane rotations, complex upper Hessenberg matrix FORTIF QR for RQ factorization by sequence of plane rotations, complex upper triangular matrix FORTIF QR for RQ factorization of VZ or RQ factorization of ZU, U complex upper triangular, Z a sequence of plane rotations or possible description of the possible value of the VZ or RQ factorization of ZU, U complex upper triangular, Z a sequence of plane rotations or possible description of the possible value of the VZ or RQ factorization of ZU, U complex upper triangular, Z a sequence of plane rotations or for largerial rectangular matrix FORTIF QR factorization of UZ or RQ factorization of ZU, U complex upper triangular, Z a sequence of plane rotations or for largerial rectangular matrix FORTIF FORTIF FORTIF PORTIF QR factorization of real general rectangular matrix (SORGR) FORTIF PORTIF PORTIF PORTIF PORTIF PORTIF FORTIF		F06QQF	• • • • • • • • • • • • • • • • • • • •
P668BF QR or RQ factorization by sequence of plane rotations, real upper spiked matrix QR factorization of UZ or RQ factorization of ZU, U real upper triangular, Z a sequence of plane rotations QR factorization by sequence of plane rotations, rank-1 update of complex upper triangular matrix augmented by a full row F668BF QR or RQ factorization by sequence of plane rotations, complex upper triangular matrix augmented by a full row F668BF QR or RQ factorization by sequence of plane rotations, complex upper spiked matrix F668BF QR or RQ factorization by sequence of plane rotations, complex upper spiked matrix F668BF QR or RQ factorization by sequence of plane rotations, complex upper spiked matrix F668BF (SGGRQR/DGRQR) Form all or part of cortage upper triangular, Z a sequence of plane rotations F68BF (SGGRQR/DGRQR) Form all or part of orthogonal Q from QR factorization determined by F68ABF or F68BBF F68BBF (SGGRQR/DGRQR) Form all or part of orthogonal Q from QR factorization determined by F68ABF (SGGRQR/DGRQR) Form all or part of orthogonal Q from QR factorization determined by F68ABF (SGGRQR/DGRQR) Form all or part of orthogonal Q from QR factorization determined by F68ABF (SGGRQR/DGRQR) Form all or part of orthogonal Q from QR factorization determined by F68ABF (CGEQRF/ZGEQRF) QR factorization of complex general rectangular matrix F68ABF (CGEQRF/ZGEQRF) QR factorization of complex general rectangular matrix f68ABF (CGEQRF/ZGEQRF) QR factorization of complex general rectangular matrix f68ABF (CGEQFF/ZGEQFF) QR factorization of complex general rectangular matrix f68ABF (CUMCQR/ZUNGQR) Apply unitary transformation determined by F68ABF (CUMCQR/ZUNGQR) Apply unitary transformation dete		EOCODE	
FOGGES QR or RQ factorization by sequence of plane rotations, real upper spiked matrix FOGGTF QR factorization of UZ or RQ factorization of UZ or RQ factorization of UZ or RQ factorization of EV or RQ factorization by sequence of plane rotations, rank-1 update of complex upper triangular matrix augmented by a full row FOGTEF QR or RQ factorization by sequence of plane rotations, complex upper triangular matrix augmented by a full row FOGTEF QR or RQ factorization by sequence of plane rotations, complex upper Hessenberg matrix FOGTEF QR or RQ factorization by sequence of plane rotations, complex upper spiked matrix FOGTEF QR or RQ factorization by sequence of plane rotations, complex upper triangular, Z a sequence of plane rotations FOGLEG CREATER CRE		гооциг	
FOSTPF QR factorization by sequence of plane rotations, rank-1 update of complex upper triangular matrix FOSTPF QR factorization by sequence of plane rotations, complex upper triangular matrix augmented by a full row FOSTRF QR or RQ factorization by sequence of plane rotations, complex upper Hessenberg matrix FOSTSF QR or RQ factorization by sequence of plane rotations, complex upper Hessenberg matrix FOSTSF QR factorization of UZ or RQ factorization of ZU, U complex upper triangular, Z a sequence of plane rotations FOSAFF (SCEQRF/DGRQRP) QR factorization of real general rectangular matrix FOSAFF (SCEQRF/DGRQRP) QR factorization of real general rectangular matrix FOSAFF (SCEQRF/DGRQRP) QR factorization of real general rectangular matrix FOSAFF (SCEQRF/DGRQR) Apply orthogonal transformation determined by FOSAFF or FOSAFF (SCEQRF) QR factorization of real general rectangular matrix FOSAFF (SCELQF/DGELQF) LQ factorization of real general rectangular matrix FOSAFF (SCEQRF) QR factorization of real general rectangular matrix FOSAFF (SCEQRF) QR factorization of complex general rectangular matrix FOSAFF (CGEQRF) QR factorization of complex general rectangular matrix FOSAFF (CGEQRF) QR factorization of complex general rectangular matrix FOSAFF (CGEQRF/QGRQR) For RosaFF or FOSAFF FOSAFF (CUMCQR/ZUNGQR) Form all or part of unitary Q from LQ factorization determined by FOSAFF or FOSAFF FOSAFF FOSAFF FOSAFF (CUMCQR/ZUNGQR) Form all or part of unitary Q from LQ factorization determined by FOSAFF or FOSAFF FOSAFF FOSAFF FOSAFF (CUNGQR/ZUNGQR) Form all or part of unitary Q from LQ factorization determined by FOSAFF or FOSAFF FOSAFF (CUNGQR/ZUNGQR) Form all or part of unitary Q from LQ factorization determined by FOSAFF OSAFF FOSAFF FOSAFF (SCEQFF) QR factorization of complex general rectangular matrix with column pivoting CUNGQR/ZUNGQR Form all or part of unitary Q from LQ factorization determined by FOSAFF FOSAFF (SCEQFF) QR factorization of complex general rectangular matrix to bidiagonal form determined by FOSAFF FOSAFF (F06QSF	
FOGTIF QRek factorization by sequence of plane rotations, complex upper triangular matrix angmented by a full row FOGTIF QR or RQ factorization by sequence of plane rotations, complex upper Hessenberg matrix FOGTIF QR or RQ factorization by sequence of plane rotations, complex upper spiked matrix POGTIF QR or RQ factorization of VZ or RQ factorization of ZU, U complex upper triangular, Z a sequence of plane rotations FORAEF (SGEQRF/DGEQRP) QR factorization of real general rectangular matrix (SORCQR/DGRACQR) Form all or part of orthogonal Qr from QR factorization determined by FOSAEF or FOSBEF FOSAEF (SGEQRF/DGEQRP) LQ factorization of real general rectangular matrix FOSAEF or FOSBEF (SGELQF) LQ factorization of real general rectangular matrix FOSAEF (SGELQF) LQ factorization of real general rectangular matrix FOSAEF (SGELQF) LQ factorization of real general rectangular matrix FOSAEF (SGEMG, JORNALQR) Apply orthogonal transformation determined by FOSAEF (SGEMM, JORNALQR) Form all or part of orthogonal Q from LQ factorization determined by FOSAEF (CUNGR/ZUNGQR) Form all or part of orthogonal Q from LQ factorization determined by FOSAEF (CUNGR/ZUNGQR) Form all or part of unitary Q from QR factorization determined by FOSAEF or FOSBEF (CUNGR/ZUNMQR) Apply unitary transformation determined by FOSAEF or FOSBEF (CGELQF/ZGELQF) LQ factorization of complex general rectangular matrix (CUNGLQ/ZUNGLQ) Form all or part of unitary Q from LQ factorization determined by FOSAEF (SGEQPF/DGEQPE) QR factorization of complex general rectangular matrix (CUNGLQ/ZUNGLQ) Form all or part of unitary Q from LQ factorization determined by FOSAEF (SGEQPF/DGEQPE) QR factorization of complex general rectangular matrix with column pivoting FOSSEF (CGEQFF/ZGEQPF) QR factorization of complex general rectangular matrix with column pivoting produced produce		F06QTF	sequence of plane rotations
### POSTRF QR or RQ factorization by sequence of plane rotations, complex upper Hessenberg matrix FOSTSF QR or RQ factorization by sequence of plane rotations, complex upper spiked matrix			triangular matrix
POGTSF QR or RQ factorization by sequence of plane rotations, complex upper spiked matrix FOGTF QR factorization of UZ or RQ factorization of ZU, U complex upper triangular, Z a sequence of plane rotations (SCEQRF/DCEQRF) QR factorization of real general rectangular matrix (SCEQRF/DCEQRF) QR factorization of real general rectangular matrix (SCEQRF/DCEQRF) QR factorization of real general rectangular matrix (SCEQRF) DCEQRF) QR factorization of real general rectangular matrix (SCEQRF) FOSAFF (SCENDAR), DORGIQA) porthogonal transformation determined by FOSAFF or FOSBEF (SCENDAR), DORGIQA) prom all or part of orthogonal Q from LQ factorization determined by FOSAFF (SCENDAR), Apply orthogonal transformation determined by FOSAFF (SCENDAR), DORGIQA) prom all or part of orthogonal Q from LQ factorization determined by FOSAFF or FOSBEF (CUNQR/ZUNQGR) Form all or part of unitary Q from QR factorization determined by FOSAFF or FOSBEF (CUNQR/ZUNNQGR) Apply unitary transformation determined by FOSAFF or FOSBEF FOSAFF (CUNGLQ), ZUUNGLQ) Form all or part of unitary Q from LQ factorization determined by FOSAFF or FOSBEF (SCEQFF/ZCEQFF) QR factorization of complex general rectangular matrix (CUNGLQ), ZUUNGLQ) Apply unitary transformation determined by FOSAFF or FOSBEF (SCEQFF/DCEQFF) QR factorization of real general rectangular matrix with column pivoting POSBEF (SCEQFF/ZCEQFF) QR factorization of real general rectangular matrix with column pivoting Singular value decomposition FOSZEF SVD of complex upper triangular matrix (Black Box) FOZZEF SVD of complex upper triangular matrix (Black Box) FOZZEF SVD of complex matrix (Black Box) FOZZEF SVD of compl		•	augmented by a full row
POSTE			matrix
Sequence of plane rotations FO8AFF (SGEGRF,DGEQRF) QR factorization of real general rectangular matrix FO8AFF (SGEGRF,DGEGRF) QR factorization of real general rectangular matrix FO8AFF (SGRMQR,DORNGQR) Form all or part of orthogonal Q from QR factorization determined by F08AFF or F08BEF FO8AFF (SGRMQR,DORNGQR) Apply orthogonal transformation determined by F08AFF or F08BFF FO8AFF (SGELQF,DGELQF) LQ factorization of real general rectangular matrix FO8AFF (SGRLQ,DORNLQ) Form all or part of orthogonal Q from LQ factorization determined by F08AHF FO8AFF (SGRMLQ,DORNLQ) Apply orthogonal transformation determined by F08AHF FO8AFF (CUNCQR,ZUNCQR) Form all or part of unitary Q from QR factorization determined by F08ASF or F08BSF FO8AFF (CUNNQR,ZUNNQR) Apply unitary transformation determined by F08ASF or F08BSF FO8AFF (CUNNLQ,ZUNNQR) Form all or part of unitary Q from LQ factorization determined by F08AVF FO8AFF (CUNNLQ,ZUNNQR) Apply unitary transformation determined by F08AVF FO8BFF (SGEQPF,ZGEQPF) QR factorization of complex general rectangular matrix with column pivoting FO8BSF (CGEQFF,ZGEQPF) QR factorization of real general rectangular matrix with column pivoting FO8BSF (CGEQFF,ZGEQPF) QR factorization of complex general rectangular matrix with column pivoting FO8BSF (SGEQPF,ZGEQPF) QR factorization of real general rectangular matrix with column pivoting FO8BSF (SGEQPF,ZGEQPF) QR factorization of real general rectangular matrix with column pivoting FO8BSF (SGEQPF,ZGEQPF) QR factorization of complex general rectangular matrix with column pivoting FO8BSF (SGEQPF,ZGEQPF) QR factorization of complex general rectangular matrix with column pivoting FO8BSF (SGEGRM) GROBBR) Generate orthogonal transformation matrices from reduction to bidiagonal form determined by FO8KEF FO8KSF (SGEBRD/ZGEBRD) Unitary reduction of complex general rectangular matrix to bidiagonal form determined by FO8KEF FO8KSF (CGEBRD/ZGEBRD) Unitary reduction of complex general rectangular matrix to bidiagonal form determined by FO8KE			
F08AFF (SCEQRF)CEQRF) QR factorization of real general rectangular matrix F08AFF (SORGQR/DORGQR) Form all or part of orthogonal Qr fom QR factorization determined by F08AEF or F08BEF F08AFF (SCELQF/DCELQF) LQ factorization of real general rectangular matrix F08AFF (SCELQF/DCELQF) LQ factorization of real general rectangular matrix F08AFF (SORGLQ/DORGLQ) Form all or part of orthogonal Q from LQ factorization determined by F08AHF (SORMLQ/DORGMLQ) Form all or part of orthogonal Q from LQ factorization determined by F08AHF (SORMLQ/DORMLQ) Apply orthogonal transformation determined by F08AFF (CCEQRF/ZCEQRF) QR factorization of complex general rectangular matrix F08AFF (CCEQRF/ZCEQRF) QR factorization of complex general rectangular matrix F08AFF (CUMQR/ZUNMQR) Apply unitary transformation determined by F08ASF or F08BSF (CGEQF/ZCEQRF) LQ factorization of complex general rectangular matrix F08AFF (CUMQR/ZUNMQR) Apply unitary transformation determined by F08ASF or F08BSF (CGEQF/ZCEQRF) LQ factorization of complex general rectangular matrix with column pivoting (CUMMLQ/ZUNMLQ) Apply unitary transformation determined by F08AVF F08BEF (SCEQPF/ZCEQFF) QR factorization of real general rectangular matrix with column pivoting (CGEQFF/ZCEQFF) QR factorization of complex general rectangular matrix with column pivoting (CGEQFF/ZCEQFF) QR factorization of complex general rectangular matrix with column pivoting (CGEQFF/ZCEQFF) QR factorization of real general rectangular matrix with column pivoting (CGEQFF/ZCEQFF) QR factorization of complex general rectangular matrix to bidiagonal form (CGEQFR) (CGEQFR) (CGEQFR) (CGEQFF) (CGEQFR) (CG		FOOTIF	, , , , , , , , , , , , , , , , , , , ,
determined by F08AEF or F08BEF F08AFF (SORMQR/)ORMQR) Apply orthogonal transformation determined by F08AEF or F08BEF F08AFF F08AFF (SORGLQF/DORGLQ) Form all or part of orthogonal Q from LQ factorization determined by F08AHF F08AFF (SORGLQ/DORGLQ) Apply orthogonal transformation determined by F08AHF F08AFF F08AFF (CGEQRF) QR factorization of complex general rectangular matrix F08AFF (CUMQR/ZUMQR) Form all or part of unitary Q from QR factorization determined by F08AFF or F08BSF F08AFF (CUMQR/ZUMQR) Apply unitary transformation determined by F08ASF or F08BSF F08AFF (CUMQR/ZUMQR) Apply unitary transformation determined by F08AFF or F08BSF F08AFF (CUMQR/ZUMGQ) Form all or part of unitary Q from LQ factorization determined by F08AFF or F08BSF F08AFF (CUMQR/ZUMGQ) Form all or part of unitary Q from LQ factorization determined by F08AFF or F08BSF F08AFF (CUMMLQ/ZUMMLQ) Apply unitary transformation determined by F08AFF or F08BSF (SGEQPF) POEGQPF) QR factorization of real general rectangular matrix with column pivoting F08BSF (SCEQPF) CGEQPF) QR factorization of real general rectangular matrix with column pivoting F08BSF (CGEQF) CGEQPF) QR factorization of complex general rectangular matrix with column pivoting F02MFF SVD of real matrix (Black Box) F02MFF SVD of real matrix (Black Box) F02MFF SVD of complex upper triangular matrix (Black Box) F02MFF SVD of complex upper triangular matrix (Black Box) F03KFF (SGRBR)/DGBBR) Generate orthogonal transformation matrices from reduction to bidiagonal form determined by F08KEF F08KFF (SGRBR)/DGRBR) Generate orthogonal transformation from reduction to bidiagonal form determined by F08KEF F08KFF (SGRBR)/DGRBR) Unitary reduction of complex general rectangular matrix to bidiagonal form determined by F08KEF F08KFF (SGRBR)/ZUNGBR) Generate unitary transformation matrices from reduction to bidiagonal form determined by F08KEF F08KFF (CUMBR,ZUNGBR) Generate unitary transformation matrices from reduction to bidiagonal form determined by F08KEF (CUMBR,ZUNGBR) Generat		F08AEF	•
FO8AGF (SORMQR/DORMQR) Apply orthogonal transformation determined by F08AEF or F08BEF F08AJF (SGELQF/DGELQF) LQ factorization of real general rectangular matrix F08AJF (SORGLQ/DORGLQ) Form all or part of orthogonal Q from LQ factorization determined by F08AHF F08ASF (SORMLQ/DORMLQ) Apply orthogonal transformation determined by F08AHF F08ASF (CGEQRF/ZGEQRF) QR factorization of complex general rectangular matrix F08ATF (CUNGQR/ZUNGQR) Form all or part of unitary Q from QR factorization determined by F08ASF or F08BSF F08AUF (CUNGQR/ZUNGQR) Apply unitary transformation determined by F08ASF or F08BSF F08AVF (CGELQP/ZGELQF) LQ factorization of complex general rectangular matrix (CUNGLQ/ZUNGLQ) Form all or part of unitary Q from LQ factorization determined by F08AVF F08AFF (CUNMLQ/ZUNMLQ) Apply unitary transformation determined by F08AVF F08BEF (SGEQPF/DGEQPF) QR factorization of real general rectangular matrix with column pivoting F08BSF (CGEQPF/ZGEQPF) QR factorization of complex general rectangular matrix with column pivoting F08BSF (CGEQPF/ZGEQPF) QR factorization of complex general rectangular matrix with column pivoting F02BF SVD of real matrix (Black Box) F02BF SVD of real matrix (Black Box) F02BF SVD of complex upper triangular matrix (Black Box) F02BF SVD of complex matrix (Black Box) F02BF (SGEBRD/DGEBRD) Orthogonal reduction of real general rectangular matrix to bidiagonal form F08KFF (SORGBR/DORGBR) Generate orthogonal transformation matrices from reduction to bidiagonal form determined by F08KEF F08KSF (CGEBR/DORGBR) Duftary reduction of complex general rectangular matrix to bidiagonal form determined by F08KEF F08KFF (CGEBR/DVGBR) Unitary reduction of complex general rectangular matrix to bidiagonal form determined by F08KEF F08KFF (CGEBR/DVGBR) Apply orthogonal transformation matrices from reduction to bidiagonal form determined by F08KEF F08KFF F08KFF (CGEBR/DVGBR) Apply unitary transformation from reduction to bidiagonal form determined by F08KFF F08KFF F08KFF F08KFF F08KSF (CGEBR/DVGBR) Apply orthogo		F08AFF	
FO8AIF (SGELQF/DGELQF) LQ factorization of real general rectangular matrix FO8AIF (SORGLQ/DORGLQ) Form all or part of orthogonal Q from LQ factorization determined by FO8AHF FO8ASF (SORMLQ/DORMLQ) Apply orthogonal transformation determined by F08AHF FO8ASF (CUNGQR/ZUNGQR) Form all or part of unitary Q from QR factorization determined by F08ASF or F08BSF (CUNGQR/ZUNGQR) Form all or part of unitary Q from QR factorization determined by F08ASF or F08BSF (CUNGQR/ZUNGQR) Apply unitary transformation determined by F08ASF or F08BSF (CUNGLQ/ZUNGLQ) Form all or part of unitary Q from LQ factorization determined by F08AVF (CUNGLQ/ZUNGLQ) Form all or part of unitary Q from LQ factorization determined by F08AVF F08BSF (SGEQFF/DGEQFF) QR factorization of complex general rectangular matrix with column pivoting (CGEQPF/ZGEQPF) QR factorization of real general rectangular matrix with column pivoting F08BSF (CGEQPF/ZGEQPF) QR factorization of complex general rectangular matrix with column pivoting Singular value decomposition F02MDF QR factorization, possibly followed by SVD SVD of real upper triangular matrix (Black Box) F02MDF SVD of real matrix (Black Box) F02MUF SVD of real upper triangular matrix (Black Box) F02MUF SVD of complex upper triangular matrix (Black Box) F02KDF SVD of complex upper triangular matrix (Black Box) F08KFF (SGERR)/DGFBRD) Orthogonal reduction of real general rectangular matrix to bidiagonal form determined by F08KEF F08KGF (SORMBR/DORMBR) Apply orthogonal transformation matrices from reduction to bidiagonal form determined by F08KEF F08KSF (CGEBR/ZGEBRD) Unitary reduction of complex general rectangular matrix to bidiagonal form determined by F08KEF F08KUF (CUNMBR/ZUNMBR) Apply unitary transformations from reduction to bidiagonal form determined by F08KEF F08KUF (CUNMBR) (SDR) Generate unitary transformations from reduction to bidiagonal form determined by F08KEF F08KUF (CUNMBR) (SDR) SVD of real bidiagonal matrix reduced from real general matrix (CBDSQR/BDSQR) SVD of real bidiagonal mat		FO8AGF	(SORMQR/DORMQR) Apply orthogonal transformation determined by F08AEF
FORALF FORAKF FORAUF FORAKF FO		F08AHF	
FO8ASF CCBEQRF/ZGEQRF) QR factorization of complex general rectangular matrix (CUNGQR/ZUNGQR) Form all or part of unitary Q from QR factorization determined by F08ASF or F08BSF			(SORGLQ/DORGLQ) Form all or part of orthogonal Q from LQ factorization
F08AFF CUNĞQR/ZUNĞQR) Form all or part of unitary Q from QR factorization determined by F08ASF or F08BSF		F08AKF	· · · · · · · · · · · · · · · · · · ·
determined by F08ASF or F08BSF F08AUF F08AUF F08AVF F08BSF F08AVF F08BSF F08AVF F08BSF F08BSS F08BSS F08BSS F08BSS F08BSS F08BSS CCBDSQR/ZBDSQR) SVD of real bidiagonal matrix reduced from real general matrix CCBDSQR/ZBDSQR) SVD of real bidiagonal matrix reduced from complex general rectangular matrix			
FO8BSF FO8AWF FO8AWF FO8AWF FO8AWF FO8AWF FO8AWF FO8AWF FO8AWF FO8AWF FO8BSF FO8AWF FO8BSF FO8AWF FO8BSF FO8AWF FO8BSF FO8AWF FO8BEF FO8BEF FO8BEF FO8BEF FO8BEF FO8BEF FO8BEF GOBORPF/DGEQPF) QR factorization of real general rectangular matrix with column pivoting FO8BSF FO8BEF FO8BEF GOBORPF/ZGEQPF) QR factorization of complex general rectangular matrix with column pivoting FO2BOF FO2WDF FO2WDF FO2WDF FO2WDF FO2WDF SVD of real upper triangular matrix (Black Box) FO2XUF FO2XUF FO2XUF SVD of complex upper triangular matrix (Black Box) FO2XUF FO8KEF GOBORBR/DORGBR) Generate orthogonal transformation matrices from reduction to bidiagonal form determined by F08KEF FO8KGF FO8KGF GORMBR/DORMBR) Apply orthogonal transformations from reduction to bidiagonal form FO8KFF GORMBR/ZUNMBR) Generate unitary transformation matrices from reduction form determined by F08KEF FO8KGF GORMBR/ZUNMBR) Generate unitary transformation matrices from reduction to bidiagonal form FO8KFF GORMBR/ZUNMBR) Generate unitary transformation matrices from reduction to bidiagonal form determined by F08KEF FO8KGF GORMBR/ZUNMBR) Generate unitary transformation matrices from reduction to bidiagonal form determined by F08KEF FO8KUF GUNMBR/ZUNMBR) Generate unitary transformation matrices from reduction to bidiagonal form determined by F08KSF GORMBR/ZUNMBR) Apply unitary transformation matrices from reduction to bidiagonal form determined by F08KSF GUNMBR/ZUNMBR) Apply unitary transformations from reduction to bidiagonal form determined by F08KSF GUNMBR/ZUNMBR) SVD of real bidiagonal matrix reduced from real general matrix GUNDSQR/ZBDSQR/SBDSQR) SVD of real bidiagonal matrix reduced from complex general			determined by F08ASF or F08BSF
FO8AWF (CUNGLQ/ZUNGLQ) Form all or part of unitary Q from LQ factorization determined by F08AVF FO8AXF (CUNMLQ/ZUNMLQ) Apply unitary transformation determined by F08AVF FO8BEF (SGEQPF/DGEQPF) QR factorization of real general rectangular matrix with column pivoting FO8BSF (CGEQPF/ZGEQPF) QR factorization of complex general rectangular matrix with column pivoting FO2WDF QR factorization, possibly followed by SVD FO2WDF SVD of real matrix (Black Box) FO2WDF SVD of real upper triangular matrix (Black Box) FO2XEF SVD of complex matrix (Black Box) FO2XEF SVD of complex upper triangular matrix (Black Box) FO3XDF (SGEBRD/DGEBRD) Orthogonal reduction of real general rectangular matrix to bidiagonal form FO8KFF (SORGBR/DORGBR) Generate orthogonal transformation matrices from reduction to bidiagonal form determined by F08KEF FO8KGF (SORMBR/DORMBR) Apply orthogonal transformations from reduction to bidiagonal form FO8KFF (CGEBRD/ZGEBRD) Unitary reduction of complex general rectangular matrix to bidiagonal form FO8KFF (CUNGBR/ZUNGBR) Generate unitary transformation matrices from reduction to bidiagonal form determined by F08KEF FO8KSF (CGEBRD/ZGEBRD) Unitary reduction of complex general rectangular matrix to bidiagonal form determined by F08KSF (CUNGBR/ZUNGBR) Generate unitary transformation matrices from reduction to bidiagonal form determined by F08KSF FO8KUF (CUNGBR/ZUNGBR) Apply unitary transformations from reduction to bidiagonal form determined by F08KSF (SBSQR/DBDSQR) SVD of real bidiagonal matrix reduced from real general matrix (CBDSQR/ZBDSQR) SVD of real bidiagonal matrix reduced from complex general			F08BSF
determined by F08AVF (CUNMLQ/ZUNMLQ) Apply unitary transformation determined by F08AVF F08BFF (SGEQPF/DGEQPF) QR factorization of real general rectangular matrix with column pivoting F08BFF (CGEQPF/ZGEQPF) QR factorization of complex general rectangular matrix with column pivoting F02WFF QR factorization, possibly followed by SVD F02WFF SVD of real matrix (Black Box) F02WFF SVD of real upper triangular matrix (Black Box) F02XFF SVD of complex upper triangular matrix (Black Box) F02XFF SVD of complex upper triangular matrix (Black Box) F02XFF (SGEBRD/DGEBRD) Orthogonal reduction of real general rectangular matrix to bidiagonal form F08KFF (SORGBR/DORGBR) Generate orthogonal transformation matrices from reduction to bidiagonal form determined by F08KEF (SORGBR/DORMBR) Apply orthogonal transformations from reduction to bidiagonal form determined by F08KEF (CGEBRD/ZGEBRD) Unitary reduction of complex general rectangular matrix to bidiagonal form F08KFF (CGEBRD/ZGEBRD) Unitary transformation matrices from reduction to bidiagonal form determined by F08KEF (CGEBRD/ZGEBRD) Unitary transformation matrices from reduction to bidiagonal form determined by F08KSF (CUNMBR/ZUNMBR) Apply unitary transformation from reduction to bidiagonal form determined by F08KSF (SBSQR/DBDSQR) SVD of real bidiagonal matrix reduced from real general matrix (CBDSQR/ZBDSQR) SVD of real bidiagonal matrix reduced from complex general			
F08BEF (SGEQPF/DGEQPF) QR factorization of real general rectangular matrix with column pivoting F08BSF (CGEQPF/ZGEQPF) QR factorization of complex general rectangular matrix with column pivoting F02WDF (CGEQPF/ZGEQPF) QR factorization of complex general rectangular matrix with column pivoting F02WDF (SVD of column pivoting) SVD of real matrix (Black Box) F02WDF (SVD of real upper triangular matrix (Black Box) F02XDF (SVD of complex matrix (Black Box) F02XDF (SGEBRD/DGEBRD) Orthogonal reduction of real general rectangular matrix to bidiagonal form F08KFF (SORGBR/DORGBR) Generate orthogonal transformation matrices from reduction to bidiagonal form determined by F08KEF F08KGF (SORMBR/DORMBR) Apply orthogonal transformations from reduction to bidiagonal form determined by F08KEF F08KSF (CGEBRD/ZGEBRD) Unitary reduction of complex general rectangular matrix to bidiagonal form F08KTF (CUNGBR/ZUNGBR) Generate unitary transformation matrices from reduction to bidiagonal form determined by F08KSF F08KUF (CUNMBR/ZUNMBR) Apply unitary transformation from reduction to bidiagonal form determined by F08KSF F08KUF (SDSQR/DBDSQR) SVD of real bidiagonal matrix reduced from real general matrix (CBDSQR/ZBDSQR) SVD of real bidiagonal matrix reduced from complex general			· · · · · · · · · · · · · · · · · · ·
column pivoting (CGEQPF/ZGEQPF) QR factorization of complex general rectangular matrix with column pivoting Singular value decomposition F02WDF QR factorization, possibly followed by SVD F02WEF SVD of real matrix (Black Box) F02WUF SVD of real upper triangular matrix (Black Box) F02XUF SVD of complex matrix (Black Box) F02XUF SVD of complex upper triangular matrix (Black Box) F02XUF SVD of complex upper triangular matrix (Black Box) F08KEF (SGEBRD/DGEBRD) Orthogonal reduction of real general rectangular matrix to bidiagonal form F08KFF (SORGBR/DORGBR) Generate orthogonal transformation matrices from reduction to bidiagonal form determined by F08KEF F08KSF (SORMBR/DORMBR) Apply orthogonal transformations from reduction to bidiagonal form determined by F08KEF (CGEBRD/ZGEBRD) Unitary reduction of complex general rectangular matrix to bidiagonal form (CUNGBR/ZUNGBR) Generate unitary transformation matrices from reduction to bidiagonal form determined by F08KSF F08KUF (CUNMBR/ZUNMBR) Apply unitary transformations from reduction to bidiagonal form determined by F08KSF (SBDSQR/DBDSQR) SVD of real bidiagonal matrix reduced from real general matrix F08MSF (CBDSQR/ZBDSQR) SVD of real bidiagonal matrix reduced from complex general			
Column pivoting Singular value decomposition F02WDF QR factorization, possibly followed by SVD F02WDF SVD of real matrix (Black Box) F02WDF SVD of real upper triangular matrix (Black Box) F02WDF SVD of complex matrix (Black Box) F02XDF SVD of complex upper triangular matrix (Black Box) F02XUF SVD of complex upper triangular matrix (Black Box) F08KEF (SGEBRD/DGEBRD) Orthogonal reduction of real general rectangular matrix to bidiagonal form F08KFF (SORGBR/DORGBR) Generate orthogonal transformation matrices from reduction to bidiagonal form determined by F08KEF F08KGF (SORMBR/DORMBR) Apply orthogonal transformations from reduction to bidiagonal form determined by F08KEF (CGEBRD/ZGEBRD) Unitary reduction of complex general rectangular matrix to bidiagonal form F08KFF (CUNGBR/ZUNGBR) Generate unitary transformation matrices from reduction to bidiagonal form determined by F08KSF (CUNGBR/ZUNMBR) Apply unitary transformations from reduction to bidiagonal form determined by F08KSF (SBDSQR/DBDSQR) SVD of real bidiagonal matrix reduced from real general matrix (CBDSQR/ZBDSQR) SVD of real bidiagonal matrix reduced from complex general			column pivoting
Singular value decomposition F02WDF QR factorization, possibly followed by SVD F02WEF SVD of real matrix (Black Box) F02WUF SVD of real upper triangular matrix (Black Box) F02XUF SVD of complex matrix (Black Box) F02XUF SVD of complex upper triangular matrix (Black Box) F02XUF SVD of complex upper triangular matrix (Black Box) F08KEF (SGEBRD/DGEBRD) Orthogonal reduction of real general rectangular matrix to bidiagonal form F08KFF (SORGBR/DORGBR) Generate orthogonal transformation matrices from reduction to bidiagonal form determined by F08KEF F08KGF (SORMBR/DORMBR) Apply orthogonal transformations from reduction to bidiagonal form determined by F08KEF (CGEBRD/ZGEBRD) Unitary reduction of complex general rectangular matrix to bidiagonal form F08KFF (CUNGBR/ZUNGBR) Generate unitary transformation matrices from reduction to bidiagonal form determined by F08KSF (CUNMBR/ZUNMBR) Apply unitary transformations from reduction to bidiagonal form determined by F08KSF (SBDSQR/DBDSQR) SVD of real bidiagonal matrix reduced from real general matrix (CBDSQR/ZBDSQR) SVD of real bidiagonal matrix reduced from complex general		FU8BSF	
FOZWEF SVD of real matrix (Black Box) FOZWEF SVD of real upper triangular matrix (Black Box) FOZXEF SVD of complex matrix (Black Box) FOZXUF SVD of complex upper triangular matrix (Black Box) FOZXUF SVD of complex upper triangular matrix (Black Box) FOZXUF SVD of complex upper triangular matrix (Black Box) FOZZUF SVD of complex upper triangular matrix (Black Box) FOZZUF SVD of complex upper triangular matrix (Black Box) FOZZUF SVD of complex upper triangular matrix (Black Box) FOZZUF SVD of complex upper triangular matrix to bidiagonal form FOZZEF (SORGBR/DORGBR) OF SOZEE	D6	Singular value decompo	
F02WF SVD of real upper triangular matrix (Black Box) F02XF SVD of complex matrix (Black Box) F02XF SVD of complex upper triangular matrix (Black Box) F03KFF SVD of complex upper triangular matrix (Black Box) F03KFF (SGEBRD/DGEBRD) Orthogonal reduction of real general rectangular matrix to bidiagonal form F03KFF (SORGBR/DORGBR) Generate orthogonal transformation matrices from reduction to bidiagonal form determined by F03KEF F03KGF (SORMBR/DORMBR) Apply orthogonal transformations from reduction to bidiagonal form determined by F03KEF F03KFF (CGEBRD/ZGEBRD) Unitary reduction of complex general rectangular matrix to bidiagonal form F03KFF (CUNGBR/ZUNGBR) Generate unitary transformation matrices from reduction to bidiagonal form determined by F03KSF F03KFF (CUNMBR/ZUNMBR) Apply unitary transformations from reduction to bidiagonal form determined by F03KSF F03KFF (SBDSQR/DBDSQR) SVD of real bidiagonal matrix reduced from real general matrix F03KFF (CBDSQR/ZBDSQR) SVD of real bidiagonal matrix reduced from complex general			
F02XFF SVD of complex matrix (Black Box) F02XUF SVD of complex upper triangular matrix (Black Box) F08KEF (SGEBRD/DGEBRD) Orthogonal reduction of real general rectangular matrix to bidiagonal form F08KFF (SORGBR/DORGBR) Generate orthogonal transformation matrices from reduction to bidiagonal form determined by F08KEF F08KGF (SORMBR/DORMBR) Apply orthogonal transformations from reduction to bidiagonal form determined by F08KEF F08KSF (CGEBRD/ZGEBRD) Unitary reduction of complex general rectangular matrix to bidiagonal form F08KTF (CUNGBR/ZUNGBR) Generate unitary transformation matrices from reduction to bidiagonal form determined by F08KSF F08KUF (CUNMBR/ZUNMBR) Apply unitary transformations from reduction to bidiagonal form determined by F08KSF F08MEF (SBDSQR/DBDSQR) SVD of real bidiagonal matrix reduced from real general matrix F08MSF (CBDSQR/ZBDSQR) SVD of real bidiagonal matrix reduced from complex general			· /
FOZUF FORKEF SVD of complex upper triangular matrix (Black Box) (SGEBRD/DGEBRD) Orthogonal reduction of real general rectangular matrix to bidiagonal form FORKEF (SORGBR/DORGBR) Generate orthogonal transformation matrices from reduction to bidiagonal form determined by F08KEF FORKEF (SORMBR/DORMBR) Apply orthogonal transformations from reduction to bidiagonal form determined by F08KEF (CGEBRD/ZGEBRD) Unitary reduction of complex general rectangular matrix to bidiagonal form FORKEF (CUNGBR/ZUNGBR) Generate unitary transformation matrices from reduction to bidiagonal form determined by F08KSF (CUNMBR/ZUNMBR) Apply unitary transformations from reduction to bidiagonal form determined by F08KSF FORMEF (SBDSQR/DBDSQR) SVD of real bidiagonal matrix reduced from real general matrix (CBDSQR/ZBDSQR) SVD of real bidiagonal matrix reduced from complex general			,
FORKEF (SGEBRD/DGEBRD) Orthogonal reduction of real general rectangular matrix to bidiagonal form FORKEF (SORGBR/DORGBR) Generate orthogonal transformation matrices from reduction to bidiagonal form determined by F08KEF FORKGF (SORMBR/DORMBR) Apply orthogonal transformations from reduction to bidiagonal form determined by F08KEF FORKSF (CGEBRD/ZGEBRD) Unitary reduction of complex general rectangular matrix to bidiagonal form FORKEF (CUNGBR/ZUNGBR) Generate unitary transformation matrices from reduction to bidiagonal form determined by F08KSF FORKUF (CUNMBR/ZUNMBR) Apply unitary transformations from reduction to bidiagonal form determined by F08KSF FORMEF (SBDSQR/DBDSQR) SVD of real bidiagonal matrix reduced from real general matrix FORMEF (CBDSQR/ZBDSQR) SVD of real bidiagonal matrix reduced from complex general			- ,
tion to bidiagonal form determined by F08KEF F08KGF (SORMBR/DORMBR) Apply orthogonal transformations from reduction to bidiagonal form determined by F08KEF F08KSF (CGEBRD/ZGEBRD) Unitary reduction of complex general rectangular matrix to bidiagonal form F08KTF (CUNGBR/ZUNGBR) Generate unitary transformation matrices from reduction to bidiagonal form determined by F08KSF F08KUF (CUNMBR/ZUNMBR) Apply unitary transformations from reduction to bidiagonal form determined by F08KSF F08MEF (SBDSQR/DBDSQR) SVD of real bidiagonal matrix reduced from real general matrix F08MSF (CBDSQR/ZBDSQR) SVD of real bidiagonal matrix reduced from complex general			(SGEBRD/DGEBRD) Orthogonal reduction of real general rectangular matrix to
agonal form determined by F08KEF F08KSF (CGEBRD/ZGEBRD) Unitary reduction of complex general rectangular matrix to bidiagonal form F08KTF (CUNGBR/ZUNGBR) Generate unitary transformation matrices from reduction to bidiagonal form determined by F08KSF F08KUF (CUNMBR/ZUNMBR) Apply unitary transformations from reduction to bidiagonal form determined by F08KSF F08MEF (SBDSQR/DBDSQR) SVD of real bidiagonal matrix reduced from real general matrix F08MSF (CBDSQR/ZBDSQR) SVD of real bidiagonal matrix reduced from complex general			tion to bidiagonal form determined by F08KEF
bidiagonal form FORKTF (CUNGBR/ZUNGBR) Generate unitary transformation matrices from reduction to bidiagonal form determined by F08KSF FORKUF (CUNMBR/ZUNMBR) Apply unitary transformations from reduction to bidiagonal form determined by F08KSF FORMEF (SBDSQR/DBDSQR) SVD of real bidiagonal matrix reduced from real general matrix FORMSF (CBDSQR/ZBDSQR) SVD of real bidiagonal matrix reduced from complex general			agonal form determined by F08KEF
to bidiagonal form determined by F08KSF F08KUF (CUNMBR/ZUNMBR) Apply unitary transformations from reduction to bidiagonal form determined by F08KSF F08MEF (SBDSQR/DBDSQR) SVD of real bidiagonal matrix reduced from real general matrix F08MSF (CBDSQR/ZBDSQR) SVD of real bidiagonal matrix reduced from complex general			bidiagonal form
form determined by F08KSF F08MEF (SBDSQR/DBDSQR) SVD of real bidiagonal matrix reduced from real general matrix F08MSF (CBDSQR/ZBDSQR) SVD of real bidiagonal matrix reduced from complex general			to bidiagonal form determined by F08KSF
matrix (CBDSQR/ZBDSQR) SVD of real bidiagonal matrix reduced from complex general			form determined by F08KSF
		1 001.11	
		F08MSF	

GAMS.14 [NP3445/2/pdf]

D8	Other matrix equations	$(a \circ AY + YR - C)$
Do	F08QHF	(STRSYL/DTRSYL) Solve real Sylvester matrix equation $AX + XB = C$, A and
	FOODE	B are upper quasi-triangular or transposes (CTDSVI /TTDSVI) Salva complex Salvactor matrix equation AY + VB = C. A.
	F08QVF	(CTRSYL/ZTRSYL) Solve complex Sylvester matrix equation $AX + XB = C$, A and B are upper triangular or conjugate-transposes
D9	-	ed or underdetermined systems of linear equations, generalized inverses
D9a D9a1	Unconstrained Least squares (L_2)	solution
Daar	FO4AMF	Least-squares solution of m real equations in n unknowns, rank = $n, m \ge n$ using
		iterative refinement (Black Box)
	F04JAF F04JDF	Minimal least-squares solution of m real equations in n unknowns, rank $\leq n, m \geq n$ Minimal least-squares solution of m real equations in n unknowns, rank $\leq n, m \geq n$
	F04JGF	Least-squares (if rank = n) or minimal least-squares (if rank < n) solution of m
		real equations in n unknowns, rank $\leq n, m \geq n$
	F04JLF F04KLF	Real general Gauss—Markov linear model (including weighted least-squares) Complex general Gauss—Markov linear model (including weighted least-squares)
	FO4QAF	Sparse linear least-squares problem, m real equations in n unknowns
	F04YAF	Covariance matrix for linear least-squares problems, m real equations in n unknowns
D9a2	Chebyshev (L_{∞}) s E02GCF	olution L_{∞} -approximation by general linear function
D9a3	Least absolute valu	
	E02GAF	\hat{L}_1 -approximation by general linear function
D9b D9b1	Constrained Least squares (L_2)	colution
Danı	E04NCF	Convex QP problem or linearly-constrained linear least-squares problem (dense)
	F04JMF	Equality-constrained real linear least-squares problem
D9b3	F04KMF	Equality-constrained complex linear least-squares problem
Dans	Least absolute valu E02GBF	L_1 -approximation by general linear function subject to linear inequality constraints
D9c	Generalized inverses	
${f E}$	F01BLF Interpolation	Pseudo-inverse and rank of real m by n matrix $(m \ge n)$
E1	Univariate data (curve	fitting)
E1a	*	piecewise polynomials)
	E01BAF E01BEF	Interpolating functions, cubic spline interpolant, one variable Interpolating functions, monotonicity-preserving, piecewise cubic Hermite, one
	101201	variable
	E02BAF	Least-squares curve cubic spline fit (including interpolation)
E1b	Polynomials E01AAF	Interpolated values, Aitken's technique, unequally spaced data, one variable
	E01ABF	Interpolated values, Everett's formula, equally spaced data, one variable
	E01AEF	Interpolating functions, polynomial interpolant, data may include derivative values, one variable
	E02AFF	Least-squares polynomial fit, special data points (including interpolation)
E1c	, ,	, rational, trigonometric)
EO	E01RAF Multivariate data (surf	Interpolating functions, rational interpolant, one variable
E2 E2a	Gridded Gridded	ace numg)
	E01DAF	Interpolating functions, fitting bicubic spline, data on rectangular grid
E2b	Scattered E01SAF	Interpolating functions, method of Renka and Cline, two variables
	E01SEF	Interpolating functions, modified Shepard's method, two variables
	E01SGF	Interpolating functions, modified Shepard's method, two variables
	E01SHF	Interpolated values, evaluate interpolant computed by E01SGF, function and first derivatives, two variables
	E01TGF	Interpolating functions, modified Shepard's method, three variables
	E01THF	Interpolated values, evaluate interpolant computed by E01TGF, function and first
E3	Service routines for inte	derivatives, three variables expolation
E3a	Evaluation of fitted f	unctions, including quadrature
E3a1	Function evaluation E01BFF	n Interpolated values, interpolant computed by E01BEF, function only, one variable
	E01RBF	Interpolated values, evaluate rational interpolant computed by E01RAF, one
		variable
	E01SBF E01SFF	Interpolated values, evaluate interpolant computed by E01SAF, two variables Interpolated values, evaluate interpolant computed by E01SEF, two variables
	E02AEF	Evaluation of fitted polynomial in one variable from Chebyshev series form
	700117	(simplified parameter list)
	E02AKF E02BBF	Evaluation of fitted polynomial in one variable from Chebyshev series form Evaluation of fitted cubic spline, function only
	E02BCF	Evaluation of fitted cubic spline, function and derivatives
	E02CBF	Evaluation of fitted polynomial in two variables

	E02DEF E02DFF	Evaluation of fitted bicubic spline at a vector of points Evaluation of fitted bicubic spline at a mesh of points
E3a2	Derivative evaluation E01BGF	Interpolated values, interpolant computed by E01BEF, function and first derivative, one variable
	EO2AHF EO2BCF	Derivative of fitted polynomial in Chebyshev series form Evaluation of fitted cubic spline, function and derivatives
E3a3	Quadrature E01BHF	Interpolated values, interpolant computed by E01BEF, definite integral, one variable
	EO2AJF EO2BDF	Integral of fitted polynomial in Chebyshev series form Evaluation of fitted cubic spline, definite integral
E3d	Other	Cont two dimensional data into namela for fitting bisplies onlines
\mathbf{F}	E02ZAF Solution of nonlinear equa	Sort two-dimensional data into panels for fitting bicubic splines tions
F1	Single equation	
F1a	Polynomial	
F1a1	Real coefficients C02AGF	All zeros of real polynomial, modified Laguerre method
	CO2AJF	All zeros of real quadratic
F1a2	Complex coefficient	
	CO2AFF	All zeros of complex polynomial, modified Laguerre method
	CO2AHF	All zeros of complex quadratic
F1b	Nonpolynomial	
	CO5ADF CO5AGF	Zero of continuous function in given interval, Bus and Dekker algorithm Zero of continuous function, Bus and Dekker algorithm, from given starting value, binary search for interval
	C05AJF	Zero of continuous function, continuation method, from a given starting value
	CO5AVF	Binary search for interval containing zero of continuous function (reverse communication)
	CO5AXF CO5AZF	Zero of continuous function by continuation method, from given starting value (reverse communication) Zero in given interval of continuous function by Bus and Dekker algorithm (reverse
T-0		communication)
$\mathbf{F2}$	System of equations C05NBF	Solution of system of nonlinear equations using function values only (easy-to-use)
	COSNDF COSNCF COSNDF	Solution of system of nonlinear equations using function values only (comprehensive) Solution of system of nonlinear equations using function values only (reverse
	C05PBF	communication) Solution of system of nonlinear equations using first derivatives (easy-to-use)
	CO5PCF CO5PDF	Solution of system of nonlinear equations using first derivatives (comprehensive) Solution of system of nonlinear equations using first derivatives (reverse communication)
F3	Service routines (e.g., ch	neck user-supplied derivatives)
	CO5ZAF	Check user's routine for calculating first derivatives
	E04HCF	Check user's routine for calculating first derivatives of function
\mathbf{G}	E04HDF Optimization (search also	Check user's routine for calculating second derivatives of function
G G1	Unconstrained	clusses A, Lo)
G1a	Univariate	
G1a1	Smooth function	
G1a1a	User provides no	
· •	E04ABF	Minimum, function of one variable using function values only
G1a1b	User provides firs E04BBF	Minimum, function of one variable, using first derivative
G1b	Multivariate	withinfulli, function of one variable, using first derivative
G1b1	Smooth function	
G1b1b	User provides firs	t derivatives
	E04DGF	Unconstrained minimum, preconditioned conjugate gradient algorithm, function of several variables using first derivatives (comprehensive)
G1b2	General function (n E04CCF	o smoothness assumed) Unconstrained minimum, simplex algorithm, function of several variables using function values only (comprehensive)
G2	Constrained	, , , , , , , , , , , , , , , , , , ,
G2a	Linear programming	
G2a1	Dense matrix of cor	
	E04MFF	LP problem (dense)
	E04NCF	Convex QP problem or linearly-constrained linear least-squares problem (dense)
	E04NFF H02BFF	QP problem (dense) Interpret MPSX data file defining IP or LP problem, optimize and print solution
	HO2CBF	Integer QP problem (dense)

GAMS.16 [NP3445/2/pdf]

G2a2	Sparse matrix of co	
	E04NKF	LP or QP problem (sparse)
	E04UGF	NLP problem (sparse)
G2b	H02CEF Transportation and a	Integer LP or QP problem (sparse)
G20	HO3ABF	Transportation problem, modified 'stepping stone' method
G2c	Integer programming	
G2c1	Zero/one	
G201	HO2BBF	Integer LP problem (dense)
G2c6	Pure integer progra	
	H02BBF	Integer LP problem (dense)
G2c7	Mixed integer prog	
	H02BBF	Integer LP problem (dense)
	H02BFF	Interpret MPSX data file defining IP or LP problem, optimize and print solution
G2d	**	reliability search class M)
G2d1	Shortest path	Chartest noth muchlane Dilletter's almosithms
CO-	HO3ADF	Shortest path problem, Dijkstra's algorithm
$egin{array}{c} G2e \ G2e1 \end{array}$	Quadratic programm	essian (i.e., convex problem)
G2e1	E04NCF	Convex QP problem or linearly-constrained linear least-squares problem (dense)
	E04NFF	QP problem (dense)
	E04NKF	LP or QP problem (sparse)
	E04UGF	NLP problem (sparse)
	H02CBF	Integer QP problem (dense)
	H02CEF	Integer LP or QP problem (sparse)
G2e2	Indefinite Hessian	
	E04NFF	QP problem (dense)
	E04NKF	LP or QP problem (sparse)
	E04UGF	NLP problem (sparse)
	HO2CBF HO2CEF	Integer QP problem (dense) Integer LP or QP problem (sparse)
G2h	General nonlinear pro	- , , ,
G2h1	Simple bounds	261 camming
G2h1a	Smooth function	
G2h1a1	User provides	
	E04JYF	Minimum, function of several variables, quasi-Newton algorithm, simple bounds,
		using function values only (easy-to-use)
	E04UCF	Minimum, function of several variables, sequential QP method, nonlinear con-
		straints, using function values and optionally first derivatives (forward communica-
	E04UFF	tion, comprehensive) Minimum, function of several variables, sequential QP method, nonlinear con-
	E040FF	straints, using function values and optionally first derivatives (reverse communi-
		cation, comprehensive)
	E04UNF	Minimum of a sum of squares, nonlinear constraints, sequential QP method, using
		function values and optionally first derivatives (comprehensive)
G2h1a2		first derivatives
	E04KDF	Minimum, function of several variables, modified Newton algorithm, simple bounds,
	TO 4177T	using first derivatives (comprehensive)
	E04KYF	Minimum, function of several variables, quasi-Newton algorithm, simple bounds,
	E04KZF	using first derivatives (easy-to-use) Minimum, function of several variables, modified Newton algorithm, simple bounds,
	БОЧКЫ	using first derivatives (easy-to-use)
	E04UCF	Minimum, function of several variables, sequential QP method, nonlinear con-
		straints, using function values and optionally first derivatives (forward communica-
		tion, comprehensive)
	E04UFF	Minimum, function of several variables, sequential QP method, nonlinear con-
		straints, using function values and optionally first derivatives (reverse communi-
	EOAINE	cation, comprehensive)
	E04UNF	Minimum of a sum of squares, nonlinear constraints, sequential QP method, using function values and optionally first derivatives (comprehensive)
G2h1a3	User provides	first and second derivatives
	E04LBF	Minimum, function of several variables, modified Newton algorithm, simple bounds,
		using first and second derivatives (comprehensive)
	E04LYF	Minimum, function of several variables, modified Newton algorithm, simple bounds,
	T • • • • • • • • • • • • • • • • • • •	using first and second derivatives (easy-to-use)
G2h2		inequality constraints
G2h2a	Smooth function	
G2h2a1	User provides E04UCF	no derivatives Minimum, function of several variables, sequential QP method, nonlinear con-
	T0400L	straints, using function values and optionally first derivatives (forward communica-
		tion, comprehensive)
		,

	E04UFF	Minimum, function of several variables, sequential QP method, nonlinear con-
		straints, using function values and optionally first derivatives (reverse communi-
		cation, comprehensive)
	E04UNF	Minimum of a sum of squares, nonlinear constraints, sequential QP method, using
		function values and optionally first derivatives (comprehensive)
G2h2a2	•	first derivatives
	E04UCF	Minimum, function of several variables, sequential QP method, nonlinear con-
		straints, using function values and optionally first derivatives (forward communica-
		tion, comprehensive)
	E04UFF	Minimum, function of several variables, sequential QP method, nonlinear con-
		straints, using function values and optionally first derivatives (reverse communi-
		cation, comprehensive)
	E04UNF	Minimum of a sum of squares, nonlinear constraints, sequential QP method, using
COL O	NI 1:	function values and optionally first derivatives (comprehensive)
G2h3	Nonlinear constrai	
G2h3a	Equality constra	ion and constraints
G2h3a1	E04UCF	Minimum, function of several variables, sequential QP method, nonlinear con-
	E040CF	straints, using function values and optionally first derivatives (forward communica-
		tion, comprehensive)
	E04UFF	Minimum, function of several variables, sequential QP method, nonlinear con-
	L04011	straints, using function values and optionally first derivatives (reverse communi-
		cation, comprehensive)
	E04UNF	Minimum of a sum of squares, nonlinear constraints, sequential QP method, using
	20 10111	function values and optionally first derivatives (comprehensive)
G2h3b	Equality and ine	equality constraints
G2h3b1	- •	ion and constraints
G2h3b1a	User provid	es no derivatives
	E04UCF	Minimum, function of several variables, sequential QP method, nonlinear con-
		straints, using function values and optionally first derivatives (forward communica-
		tion, comprehensive)
	E04UFF	Minimum, function of several variables, sequential QP method, nonlinear con-
		straints, using function values and optionally first derivatives (reverse communi-
		cation, comprehensive)
	E04UNF	Minimum of a sum of squares, nonlinear constraints, sequential QP method, using
		function values and optionally first derivatives (comprehensive)
G2h3b1b	•	es first derivatives of function and constraints
	E04UCF	Minimum, function of several variables, sequential QP method, nonlinear con-
		straints, using function values and optionally first derivatives (forward communica-
		tion, comprehensive)
	E04UFF	Minimum, function of several variables, sequential QP method, nonlinear con-
		straints, using function values and optionally first derivatives (reverse communi-
	EQ AIDIE	cation, comprehensive)
	E04UNF	Minimum of a sum of squares, nonlinear constraints, sequential QP method, using function values and optionally first derivatives (comprehensive)
G4	Service routines	function values and optionally first derivatives (comprehensive)
G4 G4a	Problem input (e.g.,	matrix generation)
G4a	E04MZF	Converts MPSX data file defining LP or QP problem to format required by E04NKF
	E04UQF	Read optional parameter values for E04UNF from external file
	HO2BUF	Convert MPSX data file defining IP or LP problem to format required by H02BBF
	1102.001	or E04MFF
G4c	Check user-supplied	
-	E04HCF	Check user's routine for calculating first derivatives of function
	E04HDF	Check user's routine for calculating second derivatives of function
	E04YAF	Check user's routine for calculating Jacobian of first derivatives
	E04YBF	Check user's routine for calculating Hessian of a sum of squares
	E04ZCF	Check user's routines for calculating first derivatives of function and constraints
G4d	Find feasible point	· ·
	E04MFF	LP problem (dense)
	E04NCF	Convex QP problem or linearly-constrained linear least-squares problem (dense)
	EO4NFF	QP problem (dense)
	EO4NKF	LP or QP problem (sparse)
	E04UCF	Minimum, function of several variables, sequential QP method, nonlinear con-
		straints, using function values and optionally first derivatives (forward communica-
		tion, comprehensive)
	E04UFF	Minimum, function of several variables, sequential QP method, nonlinear con-
		straints, using function values and optionally first derivatives (reverse communi-
		cation, comprehensive)
	E04UGF	NLP problem (sparse)
	E04UNF	Minimum of a sum of squares, nonlinear constraints, sequential QP method, using
	*** * ** =	function values and optionally first derivatives (comprehensive)
	H02CBF	Integer QP problem (dense)
	H02CEF	Integer LP or QP problem (sparse)

GAMS.18 [NP3445/2/pdf]

G4f	Other	
041	E04DJF	Read optional parameter values for E04DGF from external file
	E04DKF	Supply optional parameter values to E04DGF
	E04MGF	Read optional parameter values for E04MFF from external file
	E04MHF	Supply optional parameter values to E04MFF
	E04NDF E04NEF	Read optional parameter values for E04NCF from external file Supply optional parameter values to E04NCF
	E04NGF	Read optional parameter values for E04NFF from external file
	E04NHF	Supply optional parameter values to E04NFF
	EO4NLF	Read optional parameter values for E04NKF from external file
	E04NMF	Supply optional parameter values to E04NKF
	E04UDF	Read optional parameter values for E04UCF or E04UFF from external file
	E04UEF E04UHF	Supply optional parameter values to E04UCF or E04UFF Read optional parameter values for E04UGF from external file
	E04UJF	Supply optional parameter values to E04UGF
	E04UQF	Read optional parameter values for E04UNF from external file
	E04URF	Supply optional parameter values to E04UNF
	E04XAF	Estimate (using numerical differentiation) gradient and/or Hessian of a function
	HO2BVF HO2BZF	Print IP or LP solutions with user specified names for rows and columns Integer programming solution, supplies further information on solution obtained by
	IIOZBZI	H02BBF
	H02CCF	Read optional parameter values for H02CBF from external file
	H02CDF	Supply optional parameter values to H02CBF
	H02CFF	Read optional parameter values for H02CEF from external file Supply optional parameter values to H02CEF
Н	H02CGF Differentiation, integration	
H1	Numerical differentiation	
	DO4AAF	Numerical differentiation, derivatives up to order 14, function of one real variable
	E04XAF	Estimate (using numerical differentiation) gradient and/or Hessian of a function
H2	Quadrature (numerical of One-dimensional integral)	evaluation of definite integrals)
H2a H2a1	Finite interval (gen-	
H2a1a		ble via user-defined procedure
H2a1a1	Automatic (use	er need only specify required accuracy)
	DO1AHF	One-dimensional quadrature, adaptive, finite interval, strategy due to Patterson, suitable for well-behaved integrands
	D01AJF	One-dimensional quadrature, adaptive, finite interval, strategy due to Piessens and
	DOLARE	de Doncker, allowing for badly-behaved integrands
	D01ARF	One-dimensional quadrature, non-adaptive, finite interval with provision for indefinite integrals
	D01ATF	One-dimensional quadrature, adaptive, finite interval, variant of D01AJF efficient
		on vector machines
	D01BDF	One-dimensional quadrature, non-adaptive, finite interval
H2a1a2	Nonautomatic D01BAF	One-dimensional Gaussian quadrature
H2a1b	Integrand availab	
H2a1b2	Nonautomatic	
	D01GAF	One-dimensional quadrature, integration of function defined by data values, Gill-
H2a2	Finite interval (spe	Miller method ecific or special type integrand including weight functions, oscillating and singular
	integrands, principa	al value integrals, splines, etc.)
H2a2a	_	ele via user-defined procedure
H2a2a1	D01AKF	er need only specify required accuracy) One-dimensional quadrature, adaptive, finite interval, method suitable for oscillat-
	Domin	ing functions
	D01ALF	One-dimensional quadrature, adaptive, finite interval, allowing for singularities at user-specified break-points
	DO1ANF	One-dimensional quadrature, adaptive, finite interval, weight function $\cos(\omega x)$ or $\sin(\omega x)$
	D01APF	One-dimensional quadrature, adaptive, finite interval, weight function with end- point singularities of algebraico-logarithmic type
	DO1AQF	One-dimensional quadrature, adaptive, finite interval, weight function $1/(x-c)$, Cauchy principal value (Hilbert transform)
	DO1AUF	One-dimensional quadrature, adaptive, finite interval, variant of D01AKF efficient
H2a2b	Integrand availab	on vector machines
н2а2b H2a2b1	_	er need only specify required accuracy)
	E02AJF	Integral of fitted polynomial in Chebyshev series form
	E02BDF	Evaluation of fitted cubic spline, definite integral

H2a3		al (including e^{-x} weight function)
H2a3a	Integrand available via user-defined procedure Automatic (user need only specify required accuracy)	
H2a3a1	DO1AMF	One-dimensional quadrature, adaptive, infinite or semi-infinite interval
	DO1ASF	One-dimensional quadrature, adaptive, semi-infinite interval, weight function $\cos(\omega x)$ or $\sin(\omega x)$
H2a3a2	Nonautomatic D01BAF	One-dimensional Gaussian quadrature
H2a4		cluding e^{-x^2} weight function)
H2a4a	9	le via user-defined procedure
H2a4a1	Automatic (use DO1AMF	er need only specify required accuracy) One-dimensional quadrature, adaptive, infinite or semi-infinite interval
H2a4a2	Nonautomatic D01BAF	One-dimensional Gaussian quadrature
H2b	Multidimensional inte	9
H2b1	· -	rectangular regions (includes iterated integrals)
H2b1a H2b1a1	_	le via user-defined procedure er need only specify required accuracy)
1120141	DO1DAF	Two-dimensional quadrature, finite region
	DO1EAF	Multi-dimensional adaptive quadrature over hyper-rectangle, multiple integrands
	D01FCF	Multi-dimensional adaptive quadrature over hyper-rectangle
TT01 1 0	D01GBF Nonautomatic	Multi-dimensional quadrature over hyper-rectangle, Monte Carlo method
H2b1a2	D01FBF	Multi-dimensional Gaussian quadrature over hyper-rectangle
	D01FDF	Multi-dimensional quadrature, Sag–Szekeres method, general product region or n -
		sphere
	D01GCF	Multi-dimensional quadrature, general product region, number-theoretic method
	D01GDF	Multi-dimensional quadrature, general product region, number-theoretic method, variant of D01GCF efficient on vector machines
H2b2	n-dimensional quad	rature on a nonrectangular region
H2b2a	_	le via user-defined procedure
H2b2a1	Automatic (use D01JAF	er need only specify required accuracy) Multi-dimensional quadrature over an n -sphere, allowing for badly-behaved
	DOIJAF	integrands
H2b2a2	Nonautomatic	
TTO	DO1PAF	Multi-dimensional quadrature over an <i>n</i> -simplex
H2c	,	compute weights and nodes for quadrature formulas) Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice
H2C	D01BBF	Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule
H2C	,	Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule Calculation of weights and abscissae for Gaussian quadrature rules, general choice
H2C	DO1BBF DO1BCF	Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule
H2c	D01BBF	Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule Calculation of weights and abscissae for Gaussian quadrature rules, general choice
H2C	DO1BBF DO1BCF	Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is prime Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points
H2c	D01BBF D01BCF D01GYF	Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is prime Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is product of two primes
I I1	DO1BBF D01BCF D01GYF D01GZF Differential and integral equal to the control of	Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is prime Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is product of two primes quations
I I1 I1a	DO1BBF D01BCF D01GYF D01GZF Differential and integral equal of the control of	Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is prime Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is product of two primes quations autions (ODE's)
I I1 I1a I1a1	DO1BBF D01BCF D01GYF D01GZF Differential and integral equivalential value problems General, nonstiff or	Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is prime Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is product of two primes quations autions (ODE's) mildly stiff
I I1 I1a	DO1BBF D01BCF D01GYF D01GZF Differential and integral equivalential value problems General, nonstiff or	Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is prime Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is product of two primes quations tations (ODE's) mildly stiff s (e.g., Runge–Kutta) ODEs, IVP, Runge–Kutta—Merson method, until a component attains given value
I I1 I1a I1a1	DO1BBF DO1BCF DO1GYF DO1GZF Differential and integral eq Ordinary differential equ Initial value problems General, nonstiff or One-step method DO2BGF	Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is prime Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is product of two primes quations eations (ODE's) mildly stiff s (e.g., Runge-Kutta) ODEs, IVP, Runge-Kutta-Merson method, until a component attains given value (simple driver)
I I1 I1a I1a1	DO1BBF D01BCF D01GYF D01GZF Differential and integral equivalent of the control of the contr	Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is prime Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is product of two primes quations eations (ODE's) mildly stiff s (e.g., Runge-Kutta) ODEs, IVP, Runge-Kutta-Merson method, until a component attains given value (simple driver) ODEs, IVP, Runge-Kutta-Merson method, until function of solution is zero (simple
I I1 I1a I1a1	DO1BBF DO1BCF DO1GYF DO1GZF Differential and integral eq Ordinary differential equ Initial value problems General, nonstiff or One-step method DO2BGF	Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is prime Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is product of two primes quations eations (ODE's) mildly stiff s (e.g., Runge-Kutta) ODEs, IVP, Runge-Kutta-Merson method, until a component attains given value (simple driver)
I I1 I1a I1a1	DO1BBF D01BCF D01GYF D01GZF Differential and integral eq Ordinary differential equ Initial value problems General, nonstiff or One-step method D02BGF D02BJF	Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is prime Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is product of two primes quations (ODE's) mildly stiff s (e.g., Runge-Kutta) ODEs, IVP, Runge-Kutta-Merson method, until a component attains given value (simple driver) ODEs, IVP, Runge-Kutta-Merson method, until function of solution is zero (simple driver) ODEs, IVP, Runge-Kutta method, until function of solution is zero, integration over range with intermediate output (simple driver)
I I1 I1a I1a1	DO1BBF D01BCF D01GYF D01GZF Differential and integral eq Ordinary differential equ Initial value problems General, nonstiff or One-step method D02BGF D02BHF D02BJF D02LAF	Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is prime Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is product of two primes quations (ODE's) mildly stiff s (e.g., Runge-Kutta) ODEs, IVP, Runge-Kutta-Merson method, until a component attains given value (simple driver) ODEs, IVP, Runge-Kutta method, until function of solution is zero (simple driver) ODEs, IVP, Runge-Kutta method, until function of solution is zero, integration over range with intermediate output (simple driver) Second-order ODEs, IVP, Runge-Kutta-Nystrom method
I I1 I1a I1a1	DO1BBF D01BCF D01GYF D01GZF Differential and integral eq Ordinary differential equ Initial value problems General, nonstiff or One-step method D02BGF D02BJF	Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is prime Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is product of two primes quations (ODE's) mildly stiff s (e.g., Runge-Kutta) ODEs, IVP, Runge-Kutta-Merson method, until a component attains given value (simple driver) ODEs, IVP, Runge-Kutta-Merson method, until function of solution is zero (simple driver) ODEs, IVP, Runge-Kutta method, until function of solution is zero, integration over range with intermediate output (simple driver) Second-order ODEs, IVP, Runge-Kutta method, integration over range with output
I I1 I1a I1a1	DO1BBF D01BCF D01GYF D01GZF Differential and integral equation of the problems of the prob	Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is prime Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is product of two primes quations (ODE's) mildly stiff s (e.g., Runge-Kutta) ODEs, IVP, Runge-Kutta-Merson method, until a component attains given value (simple driver) ODEs, IVP, Runge-Kutta-Merson method, until function of solution is zero (simple driver) ODEs, IVP, Runge-Kutta method, until function of solution is zero, integration over range with intermediate output (simple driver) Second-order ODEs, IVP, Runge-Kutta method, integration over range with output ODEs, IVP, Runge-Kutta method, integration over one step is (e.g., Adams predictor-corrector)
I I1 I1a I1a1 I1a1a	DO1BBF D01BCF D01GYF D01GZF Differential and integral equation of the policy of th	Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is prime Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is product of two primes quations (ODE's) mildly stiff s (e.g., Runge-Kutta) ODEs, IVP, Runge-Kutta-Merson method, until a component attains given value (simple driver) ODEs, IVP, Runge-Kutta-Merson method, until function of solution is zero (simple driver) ODEs, IVP, Runge-Kutta method, until function of solution is zero, integration over range with intermediate output (simple driver) Second-order ODEs, IVP, Runge-Kutta method, integration over range with output ODEs, IVP, Runge-Kutta method, integration over range with output ODEs, IVP, Runge-Kutta method, integration over one step is (e.g., Adams predictor-corrector) ODEs, IVP, Adams method, until function of solution is zero, intermediate output
I I1 I1a I1a1 I1a1a	DO1BBF D01BCF D01GYF D01GZF Differential and integral equation of the problems of the prob	Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is prime Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is product of two primes quations (ODE's) mildly stiff s (e.g., Runge-Kutta) ODEs, IVP, Runge-Kutta-Merson method, until a component attains given value (simple driver) ODEs, IVP, Runge-Kutta method, until function of solution is zero (simple driver) ODEs, IVP, Runge-Kutta method, until function of solution is zero, integration over range with intermediate output (simple driver) Second-order ODEs, IVP, Runge-Kutta method, integration over range with output ODEs, IVP, Runge-Kutta method, integration over range with output ODEs, IVP, Runge-Kutta method, integration over one step is (e.g., Adams predictor-corrector) ODEs, IVP, Adams method, until function of solution is zero, intermediate output (simple driver)
I I1 I1a I1a1 I1a1a	DO1BBF D01BCF D01GYF D01GZF Differential and integral equation of the problems of the prob	Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is prime Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is product of two primes quations (ODE's) mildly stiff s (e.g., Runge-Kutta) ODEs, IVP, Runge-Kutta-Merson method, until a component attains given value (simple driver) ODEs, IVP, Runge-Kutta-Merson method, until function of solution is zero (simple driver) ODEs, IVP, Runge-Kutta method, until function of solution is zero, integration over range with intermediate output (simple driver) Second-order ODEs, IVP, Runge-Kutta method, integration over range with output ODEs, IVP, Runge-Kutta method, integration over range with output ODEs, IVP, Runge-Kutta method, integration over one step is (e.g., Adams predictor-corrector) ODEs, IVP, Adams method, until function of solution is zero, intermediate output
I I1 I1a I1a1 I1a1a	DO1BBF D01BCF D01GYF D01GZF Differential and integral equation of the problems of the prob	Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is prime Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is product of two primes quations (ODE's) mildly stiff s (e.g., Runge-Kutta) ODEs, IVP, Runge-Kutta-Merson method, until a component attains given value (simple driver) ODEs, IVP, Runge-Kutta-Merson method, until function of solution is zero (simple driver) ODEs, IVP, Runge-Kutta method, until function of solution is zero, integration over range with intermediate output (simple driver) Second-order ODEs, IVP, Runge-Kutta-Nystrom method ODEs, IVP, Runge-Kutta method, integration over range with output ODEs, IVP, Runge-Kutta method, integration over one step is (e.g., Adams predictor-corrector) ODEs, IVP, Adams method, until function of solution is zero, intermediate output (simple driver) ODEs, IVP, Adams method with root-finding (forward communication, comprehensive) ODEs, IVP, Adams method with root-finding (reverse communication,
I I1 I1a I1a1 I1a1a	DO1BBF D01BCF D01GYF D01GZF Differential and integral eq Ordinary differential equ Initial value problems General, nonstiff or One-step method D02BGF D02BHF D02BJF D02LAF D02PCF D02PDF Multistep method D02CJF D02QFF D02QGF	Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is prime Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is product of two primes quations (ODE's) mildly stiff s (e.g., Runge-Kutta) ODEs, IVP, Runge-Kutta-Merson method, until a component attains given value (simple driver) ODEs, IVP, Runge-Kutta method, until function of solution is zero (simple driver) ODEs, IVP, Runge-Kutta method, until function of solution is zero, integration over range with intermediate output (simple driver) Second-order ODEs, IVP, Runge-Kutta-Nystrom method ODEs, IVP, Runge-Kutta method, integration over range with output ODEs, IVP, Runge-Kutta method, integration over one step ls (e.g., Adams predictor-corrector) ODEs, IVP, Adams method, until function of solution is zero, intermediate output (simple driver) ODEs, IVP, Adams method with root-finding (forward communication, comprehensive) ODEs, IVP, Adams method with root-finding (reverse communication, comprehensive)
I I1 I1a I1a1 I1a1a	DO1BBF D01BCF D01GYF D01GZF Differential and integral eq Ordinary differential equ Initial value problems General, nonstiff or One-step method D02BGF D02BHF D02BJF D02LAF D02PCF D02PDF Multistep method D02CJF D02QFF D02QGF	Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is prime Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is product of two primes quations (ODE's) mildly stiff s (e.g., Runge-Kutta) ODEs, IVP, Runge-Kutta-Merson method, until a component attains given value (simple driver) ODEs, IVP, Runge-Kutta-Merson method, until function of solution is zero (simple driver) ODEs, IVP, Runge-Kutta method, until function of solution is zero, integration over range with intermediate output (simple driver) Second-order ODEs, IVP, Runge-Kutta-Nystrom method ODEs, IVP, Runge-Kutta method, integration over range with output ODEs, IVP, Runge-Kutta method, integration over one step is (e.g., Adams predictor-corrector) ODEs, IVP, Adams method, until function is zero, intermediate output (simple driver) ODEs, IVP, Adams method with root-finding (forward communication, comprehensive) ODEs, IVP, Adams method with root-finding (reverse communication, comprehensive) ODEs, IVP, Adams method with root-finding (reverse communication, comprehensive)
I I1 I1a I1a1 I1a1a	DO1BBF D01BCF D01GYF D01GZF Differential and integral eq Ordinary differential equ Initial value problems General, nonstiff or One-step method D02BGF D02BHF D02BJF D02LAF D02POF D02PDF Multistep method D02CJF D02QFF D02QFF D02QGF Stiff and mixed alge	Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is prime Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is product of two primes quations (ODE's) mildly stiff s (e.g., Runge-Kutta) ODEs, IVP, Runge-Kutta-Merson method, until a component attains given value (simple driver) ODEs, IVP, Runge-Kutta method, until function of solution is zero (simple driver) ODEs, IVP, Runge-Kutta method, until function of solution is zero, integration over range with intermediate output (simple driver) ODEs, IVP, Runge-Kutta method, integration over range with output ODEs, IVP, Runge-Kutta method, integration over one step is (e.g., Adams predictor-corrector) ODEs, IVP, Adams method, until function of solution is zero, intermediate output (simple driver) ODEs, IVP, Adams method with root-finding (forward communication, comprehensive) ODEs, IVP, Adams method with root-finding (reverse communication, comprehensive) ODEs, Stiff IVP, BDF method, until function of solution is zero, intermediate output (simple driver)
I I1 I1a I1a1 I1a1a	DO1BBF D01BCF D01GYF D01GZF Differential and integral eq Ordinary differential equ Initial value problems General, nonstiff or One-step method D02BGF D02BHF D02BJF D02LAF D02PCF D02PDF Multistep method D02CJF D02QFF D02QFF D02QFF D02QFF D02DF Stiff and mixed alge D02EJF D02NBF	Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is prime Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is product of two primes quations (ODE's) mildly stiff s (e.g., Runge-Kutta) ODEs, IVP, Runge-Kutta-Merson method, until a component attains given value (simple driver) ODEs, IVP, Runge-Kutta method, until function of solution is zero (simple driver) ODEs, IVP, Runge-Kutta method, until function of solution is zero, integration over range with intermediate output (simple driver) Second-order ODEs, IVP, Runge-Kutta-Nystrom method ODEs, IVP, Runge-Kutta method, integration over range with output ODEs, IVP, Runge-Kutta method, integration over one step Is (e.g., Adams predictor-corrector) ODEs, IVP, Adams method, until function of solution is zero, intermediate output (simple driver) ODEs, IVP, Adams method with root-finding (forward communication, comprehensive) ODEs, IVP, Adams method with root-finding (reverse communication, comprehensive) ODEs, stiff IVP, BDF method, until function of solution is zero, intermediate output (simple driver)
I I1 I1a I1a1 I1a1a	DO1BBF D01BCF D01GYF D01GZF Differential and integral eq Ordinary differential equ Initial value problems General, nonstiff or One-step method D02BGF D02BJF D02LAF D02PCF D02PDF Multistep method D02CJF D02QFF D02QFF D02QFF D02QFF D02QFF D02QFF D02CJF	Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is prime Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is product of two primes quations (ODE's) mildly stiff s (e.g., Runge-Kutta) ODEs, IVP, Runge-Kutta-Merson method, until a component attains given value (simple driver) ODEs, IVP, Runge-Kutta method, until function of solution is zero (simple driver) ODEs, IVP, Runge-Kutta method, until function of solution is zero, integration over range with intermediate output (simple driver) ODEs, IVP, Runge-Kutta method, integration over range with output ODEs, IVP, Runge-Kutta method, integration over one step is (e.g., Adams predictor-corrector) ODEs, IVP, Adams method, until function of solution is zero, intermediate output (simple driver) ODEs, IVP, Adams method with root-finding (forward communication, comprehensive) ODEs, IVP, Adams method with root-finding (reverse communication, comprehensive) ODEs, Stiff IVP, BDF method, until function of solution is zero, intermediate output (simple driver)

GAMS.20 [NP3445/2/pdf]

	DO2NGF DO2NHF	Implicit/algebraic ODEs, stiff IVP, full Jacobian (comprehensive) Implicit/algebraic ODEs, stiff IVP, banded Jacobian (comprehensive)
	DO2NJF	Implicit/algebraic ODEs, stiff IVP, sparse Jacobian (comprehensive)
	DO2NMF	Explicit ODEs, stiff IVP (reverse communication, comprehensive)
	DO2NNF	Implicit/algebraic ODEs, stiff IVP (reverse communication, comprehensive)
	D03PKF	General system of first-order PDEs, coupled DAEs, method of lines, Keller box discretisation, one space variable
	D03PPF	General system of parabolic PDEs, coupled DAEs, method of lines, finite differences, remeshing, one space variable
	D03PRF	General system of first-order PDEs, coupled DAEs, method of lines, Keller box discretisation, remeshing, one space variable
I1b I1b1	Multipoint boundary Linear	· · · · · · · · · · · · · · · · · · ·
	D02GBF	ODEs, boundary value problem, finite difference technique with deferred correction, general linear problem
	D02JAF	ODEs, boundary value problem, collocation and least-squares, single n th-order linear equation
	D02JBF	ODEs, boundary value problem, collocation and least-squares, system of first-order linear equations
	D02TGF	$n{ m th}{ m -order}$ linear ODEs, boundary value problem, collocation and least-squares
I1b2	Nonlinear	
	D02AGF	ODEs, boundary value problem, shooting and matching technique, allowing interior matching point, general parameters to be determined
	DO2GAF	ODEs, boundary value problem, finite difference technique with deferred correction,
	DO2HAF	simple nonlinear problem ODEs, boundary value problem, shooting and matching, boundary values to be determined
	DO2HBF	ODEs, boundary value problem, shooting and matching, general parameters to be determined
	DO2RAF	ODEs, general nonlinear boundary value problem, finite difference technique with deferred correction, continuation facility
	D02SAF	ODEs, boundary value problem, shooting and matching technique, subject to extra algebraic equations, general parameters to be determined
	D02TKF	ODEs, general nonlinear boundary value problem, collocation technique
I1b3	Eigenvalue (e.g., St	
	D02AGF	ODEs, boundary value problem, shooting and matching technique, allowing interior matching point, general parameters to be determined
	DO2HBF	ODEs, boundary value problem, shooting and matching, general parameters to be determined
	DO2KAF	Second-order Sturm-Liouville problem, regular system, finite range, eigenvalue only
	D02KDF	Second-order Sturm-Liouville problem, regular/singular system, finite/infinite range, eigenvalue only, user-specified break-points
	D02KEF	Second-order Sturm-Liouville problem, regular/singular system, finite/infinite range, eigenvalue and eigenfunction, user-specified break-points
I1c	Service routines (e g	interpolation of solutions, error handling, test programs)
110	DO2LXF	Second-order ODEs, IVP, set-up for D02LAF
	D02LYF	Second-order ODEs, IVP, diagnostics for D02LAF
	D02LZF	Second-order ODEs, IVP, interpolation for D02LAF
	DO2MVF	ODEs, IVP, DASSL method, set-up for D02M–N routines
	D02MZF	ODEs, IVP, interpolation for D02M–N routines, natural interpolant
	DO2NRF	ODEs, IVP, for use with D02M-N routines, sparse Jacobian, enquiry routine
	DO2NSF	ODEs, IVP, for use with D02M–N routines, full Jacobian, linear algebra set-up
	DO2NTF	ODEs, IVP, for use with D02M-N routines, banded Jacobian, linear algebra set-up ODEs, IVP, for use with D02M-N routines, sparse Jacobian, linear algebra set-up
	DO2NUF DO2NVF	ODEs, IVP, for use with Dozin-in routines, sparse Jacobian, linear algebra set-up ODEs, IVP, BDF method, set-up for Do2M-N routines
	DO2NWF	ODEs, IVP, Blend method, set-up for D02M-N routines
	DO2NXF	ODEs, IVP, sparse Jacobian, linear algebra diagnostics, for use with D02M–N routines
	DO2NYF	ODEs, IVP, integrator diagnostics, for use with D02M–N routines
	D02NZF	ODEs, IVP, set-up for continuation calls to integrator, for use with D02M–N routines
	D02PVF	ODEs, IVP, set-up for D02PCF and D02PDF
	DO2PWF	ODEs, IVP, resets end of range for D02PDF
	DO2PXF	ODEs, IVP, interpolation for D02PDF
	DO2PYF	ODEs, IVP, integration diagnostics for D02PCF and D02PDF
	DO2PZF	ODEs, IVP, error assessment diagnostics for D02PCF and D02PDF
	DO2QWF DO2QXF	ODEs, IVP, set-up for D02QFF and D02QGF ODEs, IVP, diagnostics for D02QFF and D02QGF
	DO2QXF DO2QYF	ODEs, IVI, diagnostics for D02QFF and D02QGF ODEs, IVP, root-finding diagnostics for D02QFF and D02QGF
	D02QZF	ODEs, IVP, interpolation for D02QFF or D02QGF
	D02TVF	ODEs, general nonlinear boundary value problem, set-up for D02TKF
	DO2TXF	ODEs, general nonlinear boundary value problem, continuation facility for D02TKF

	DO2TYF	ODEs, general nonlinear boundary value problem, interpolation for D02TKF
	DO2TZF DO2XJF	ODEs, general nonlinear boundary value problem, diagnostics for D02TKF ODEs, IVP, interpolation for D02M-N routines, natural interpolant
	DO2XKF	ODEs, IVP, interpolation for D02M-N routines, C_1 interpolation
	DO2ZAF	ODEs, IVP, weighted norm of local error estimate for D02M-N routines
I2	Partial differential equa	
I2a I2a1	Initial boundary valu Parabolic	e problems
12a1 12a1a	One spatial dime	ension
	D03PCF	General system of parabolic PDEs, method of lines, finite differences, one space variable
	DO3PDF	General system of parabolic PDEs, method of lines, Chebyshev \mathbb{C}^0 collocation, one space variable
	D03PEF	General system of first-order PDEs, method of lines, Keller box discretisation, one space variable
	D03PHF	General system of parabolic PDEs, coupled DAEs, method of lines, finite differences, one space variable
	D03PJF	General system of parabolic PDEs, coupled DAEs, method of lines, Chebyshev C^0 collocation, one space variable
	D03PKF	General system of first-order PDEs, coupled DAEs, method of lines, Keller box discretisation, one space variable
	D03PPF	General system of parabolic PDEs, coupled DAEs, method of lines, finite differences, remeshing, one space variable
	D03PRF	General system of first-order PDEs, coupled DAEs, method of lines, Keller box discretisation, remeshing, one space variable
	DO3PYF DO3PZF	PDEs, spatial interpolation with D03PDF or D03PJF PDEs, spatial interpolation with D03PCF, D03PEF, D03PFF, D03PHF, D03PKF,
	2001 21	D03PLF, D03PPF, D03PRF or D03PSF
I2a1b	Two or more spa	
	DOSRAF	General system of second-order PDEs, method of lines, finite differences, remeshing, two space variables, rectangular region
	DOORBF	General system of second-order PDEs, method of lines, finite differences, remeshing, two space variables, rectilinear region
	DO3RYF DO3RZF	Check initial grid data in D03RBF Extract grid data from D03RBF
I2a2	Hyperbolic	
	D03PFF	General system of convection-diffusion PDEs with source terms in conservative form, method of lines, upwind scheme using numerical flux function based on Riemann solver, one space variable
	D03PLF	General system of convection-diffusion PDEs with source terms in conservative form, coupled DAEs, method of lines, upwind scheme using numerical flux function based on Riemann solver, one space variable
	D03PSF	General system of convection-diffusion PDEs with source terms in conservative form, coupled DAEs, method of lines, upwind scheme using numerical flux function based on Riemann solver, remeshing, one space variable
	D03PUF	Roe's approximate Riemann solver for Euler equations in conservative form, for use with D03PFF, D03PLF and D03PSF
	D03PVF	Osher's approximate Riemann solver for Euler equations in conservative form, for use with D03PFF, D03PLF and D03PSF
	DO3PWF	Modified HLL Riemann solver for Euler equations in conservative form, for use with D03PFF, D03PLF and D03PSF
TO.	D03PXF	Exact Riemann Solver for Euler equations in conservative form, for use with D03PFF, D03PLF and D03PSF
I2b I2b1	Elliptic boundary val Linear	nue problems
12b1 12b1a	Second order	
I2b1a1		ace) or Helmholtz equation
I2b1a1a	Rectangular DO3FAF	domain (or topologically rectangular in the coordinate system) Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates
I2b1a1b		ular domain
	DOSEAF	Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain
I2b1a3	Nonseparable D03EEF	problems Discretize a second-order elliptic PDE on a rectangle
I2b4	Service routines	Discretization and a discretization DDE and the discretization of
	DO3EEF DO3PYF	Discretize a second-order elliptic PDE on a rectangle PDEs, spatial interpolation with D03PDF or D03PJF
	DOSPZF	PDEs, spatial interpolation with D031 BF of D031 SF PDEs, spatial interpolation with D03PCF, D03PEF, D03PFF, D03PHF, D03PKF, D03PLF, D03PPF, D03PRF or D03PSF
I2b4a	Domain triangul DO3MAF	Triangulation of plane region

GAMS.22 [NP3445/2/pdf]

I2b4b	Solution of discre	etized elliptic equations
	DO3EBF	Elliptic PDE, solution of finite difference equations by SIP, five-point two-
	D03ECF	dimensional molecule, iterate to convergence Elliptic PDE, solution of finite difference equations by SIP for seven-point three-
	500201	dimensional molecule, iterate to convergence
	DO3EDF	Elliptic PDE, solution of finite difference equations by a multigrid technique
	DOSUAF	Elliptic PDE, solution of finite difference equations by SIP, five-point two- dimensional molecule, one iteration
	DOSUBF	Elliptic PDE, solution of finite difference equations by SIP, seven-point three-dimensional molecule, one iteration
I 3	Integral equations	
	DO5AAF DO5ABF	Linear non-singular Fredholm integral equation, second kind, split kernel Linear non-singular Fredholm integral equation, second kind, smooth kernel
	DO5BAF	Nonlinear Volterra convolution equation, second kind
	D05BDF	Nonlinear convolution Volterra–Abel equation, second kind, weakly singular
	D05BEF	Nonlinear convolution Volterra—Abel equation, first kind, weakly singular
	DO5BWF DO5BYF	Generate weights for use in solving Volterra equations Generate weights for use in solving weakly singular Abel-type equations
J	Integral transforms	
J1	~	ns including fast Fourier transforms
J1a J1a1	One-dimensional Real	
JIAI	C06EAF	Single one-dimensional real discrete Fourier transform, no extra workspace
	CO6FAF	Single one-dimensional real discrete Fourier transform, extra workspace for greater speed
	C06FPF	Multiple one-dimensional real discrete Fourier transforms
	CO6PAF	Single 1D real and Hermitian complex discrete Fourier transform, using complex
	CO6PAF	data format for Hermitian sequences Single one-dimensional real and Hermitian complex discrete Fourier transform, using
	COOPAP	complex data format for Hermitian sequences
	C06PPF	Multiple 1D real and Hermitian complex discrete Fourier transforms, using complex data format for Hermitian sequences
	C06PPF	Multiple one-dimensional real and Hermitian complex discrete Fourier transforms,
	C06PQF	using complex data format for Hermitian sequences Multiple one-dimensional real and Hermitian complex discrete Fourier transforms,
74 0	G1	using complex data format for Hermitian sequences and sequences stored as columns $% \left(1\right) =\left(1\right) \left(1\right)$
J1a2	Complex C06EBF	Single one-dimensional Hermitian discrete Fourier transform, no extra workspace
	C06ECF	Single one-dimensional complex discrete Fourier transform, no extra workspace
	C06FBF	Single one-dimensional Hermitian discrete Fourier transform, extra workspace for greater speed
	C06FCF	Single one-dimensional complex discrete Fourier transform, extra workspace for
		greater speed
	CO6FFF CO6FQF	One-dimensional complex discrete Fourier transform of multi-dimensional data Multiple one-dimensional Hermitian discrete Fourier transforms
	CO6FRF	Multiple one-dimensional complex discrete Fourier transforms
	C06GBF	Complex conjugate of Hermitian sequence
	CO6GCF CO6GQF	Complex conjugate of complex sequence Complex conjugate of multiple Hermitian sequences
	COGGSF	Convert Hermitian sequences to general complex sequences
	C06PCF	Single 1D complex discrete Fourier transform, complex data format
	CO6PCF CO6PFF	Single one-dimensional complex discrete Fourier transform, complex data format 1D complex discrete Fourier transform of multi-dimensional data (using the complex
	COOFFF	data type)
	CO6PFF	One-dimensional complex discrete Fourier transform of multi-dimensional data
	CO6PRF	(using complex data type) Multiple 1D complex discrete Fourier transforms using complex data format
	CO6PRF	Multiple one-dimensional complex discrete Fourier transforms using complex data format
	C06PSF	Multiple one-dimensional complex discrete Fourier transforms using complex data
71 0	Cine and assine to	format and sequences stored as columns
J1a3	Sine and cosine tra	Discrete sine transform
	C06HBF	Discrete cosine transform
	CO6HCF CO6HDF	Discrete quarter-wave sine transform Discrete quarter-wave cosine transform
	COGRAF	Discrete quarter-wave cosine transform Discrete sine transform (easy-to-use)
	CO6RAF	Discrete sine transform (easy-to-use)
	CO6RBF CO6RBF	Discrete cosine transform (easy-to-use) Discrete cosine transform (easy-to-use)
	COGRCF	Discrete cosine transform (easy-to-use) Discrete quarter-wave sine transform (easy-to-use)
	C06RCF	Discrete quarter-wave sine transform (easy-to-use)

Discrete quartor-wave cosine transform (cosy-to-use)			
Multi-dimensional Complex discrete Fourier transform of multi-dimensional data Construction		CO6RDF	Discrete quarter-wave cosine transform (easy-to-use)
Multi-dimensional complex discrete Fourier transform of multi-dimensional data			Discrete quarter-wave cosine transform (easy-to-use)
COSPUT C	$_{ m J1b}$		
Company			
Multi-dimensional complex discrete Fourier transform of multi-dimensional data (uning complex data type) (uning complex data format complex data f			•
Using complex data type			*
Multi-dimensional complex discrete Fourier transform of multi-dimensional data Using complex data Using complex data C		000101	• .
CORPUT COMPUT C		CO6PJF	\ · · · · · · · · · · · · · · · · ·
CORPUT Two-dimensional complex discrete Fourier transform, complex data format CORPUT CORPUT Three-dimensional complex discrete Fourier transform, complex data format Three-dimensional complex discrete Fourier transform, complex data format Three-dimensional complex discrete Fourier transform, complex data format CORPUT Corputation of two real vectors, no extra workspace for greater speed CORPUT Circular convolution or correlation of two real vectors, extra workspace for greater speed CORPUT Circular convolution or correlation of two complex vectors CORPUT Circular convolution or correlation of two complex vectors CORPUT Circular convolution or correlation of two complex vectors CORPUT Corputation CORPUT Corputation Corputatio			\ · · · · · · · · · · · · · · · · ·
CORPET Three-dimensional complex discrete Fourier transform, complex data format CORPET Three-dimensional complex discrete Fourier transform, complex data format CORPET Corellar convolution or correlation of two real vectors, extra workspace Circular convolution or correlation of two complex vectors CORPET Circular convolution or correlation of two complex vectors CORPET Circular convolution or correlation of two complex vectors CORPET Circular convolution or correlation of two complex vectors CORPET CORLES Inverse Laplace transform or correlation of two complex vectors CORPET CORLES Inverse Laplace transform, Crump's method Inverse Laplace transform as computed by CORLES			
Convolutions			
Convolutions CORERF CORERF Circular convolution or correlation of two real vectors, no extra workspace for greater speed Corelation of two complex vectors (CORERF Circular convolution or correlation of two complex vectors (CORERF Circular convolution or correlation of two complex vectors (CORERF CIRCUlar convolution or correlation of two complex vectors (CORERF CIRCUlar convolution or correlation of two complex vectors (CORERF CIRCUlar convolution or correlation of two complex vectors (CORERF CIRCUlar convolution or correlation of two complex vectors (CORERF CIRCUlar convolution or correlation of two complex vectors Jay Italian (CORERF CIRCUlar convolution or correlation of two complex vectors MIA (CORERF CIRCUlar convolution or correlation of two complex vectors MIA (CORERF CIRCUlar convolution or correlation of two complex vectors MIA (CORERF CIRCUlar convolution or correlation of two complex vectors MIA (CORERF CIRCUlar convolution or correlation of two complex vectors MIA (CORERF CIRCUlar convolution or correlation of two complex vectors MIA (CORERF CIRCUlar convolution or correlation of two complex vectors MIA (CORERF CIRCUlar convolution) MIA (MIA)			•
COSEKE COSEKE Circular convolution or correlation of two real vectors, extra workspace for greater speed COSEKE COSEKE COSEKE COSEKE COSEKE COSEKE COSEKE Coverage Circular convolution or correlation of two complex vectors	10		Three-dimensional complex discrete Fourier transform, complex data format
	J Z		Circular convolution or correlation of two real vectors, no extra workspace
COPFECT Circular convolution or correlation of two complex vectors Corontarion			•
CORPER CORPER Cornelation of two complex vectors			
Laplace transforms		CO6PKF	-
COGLES Country principal value (Hilbert transform as computed by COGLES Country principal value (Hilbert transform) Country principal value (Hilbert transform) Country principal value (Hilbert transform)			Circular convolution or correlation of two complex vectors
COGEST COGEST COGEST COGEST Coultain timerse Laplace transform, modified Weeks' method (COGEST Coultain timerse Laplace transforms as computed by COGEST Coultain timerse Laplace transforms as computed by COGEST Coultain timerse Coultain timer	J3		
Milbert transforms			1 , 1
Hilbert transforms			1
	.14		Evaluate inverse Eaplace transform as computed by Coolds
Cauchy principal value (Hilbert transform)	01		One-dimensional quadrature, adaptive, finite interval, weight function $1/(x-c)$,
K1			
Klala Unconstrained Unconstrained Unconstrained Unconstrained Unconstrained Unconstrained Unconstrained Unconstrained East-squares curve cubic spline flit (including interpolation) Least-squares curve cubic spline curve fit, automatic knot placement Least-squares curve cubic spline curve fit, automatic knot placement Least-squares curve fit, by polynomials, arbitrary data points Least-squares curve fit, by polynomials, arbitrary data points Least-squares polynomial fit, special data points (including interpolation)			, , , , , , , , , , , , , , , , , , ,
Klala Unconstrained Klala Univariate data (curve fitting)		- , ,	
Klala Univariate data \(curve fitting)		- ,	search also classes D5, D6, D9)
Polynomial splines (piecewise polynomials) E028BF Least-squares curve cubic spline fit (including interpolation) E028BF Least-squares curve fit, automatic knot placement Polynomials E024BF Least-squares curve fit, by polynomials, arbitrary data points E024BF Least-squares surface fit by polynomials, arbitrary data points E024BF Least-squares surface fit by polynomials, data on lines E020BF Least-squares surface fit by polynomials, data on lines E020BF Least-squares surface fit by bicubic splines E020BF Least-squares surface fit by bicubic splines with automatic knot placement, data on rectangular grid E020BF Least-squares surface fit by bicubic splines with automatic knot placement, scattered data			(curve fitting)
K1a1a2 Polynomials E02ADF Least-squares curve cubic spline curve fit, automatic knot placement F02ADF Least-squares curve fit, by polynomials, arbitrary data points E02ADF Least-squares polynomial fit, special data points (including interpolation) K1a1b Multivariate data (surface fitting) E02CAF Least-squares surface fit by polynomials, data on lines E02DAF Least-squares surface fit, bicubic splines E02DAF Least-squares surface fit by bicubic splines E02DAF Least-squares surface fit by bicubic splines with automatic knot placement, data on rectangular grid E02DAF Least-squares surface fit by bicubic splines with automatic knot placement, data on rectangular grid Least-squares surface fit by bicubic splines with automatic knot placement, data on rectangular grid Linear constraints K1a2 Constrained K1a2 Linear constraints K1b1a Unconstrained K1b1a Simooth functions K1b1a Unconstrained K1b1a Simooth functions K1b1a Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using function values only (comprehensive) E04FFF Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton algorithm using first derivatives (comprehensive) E04GBF Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton algorithm using first derivatives (comprehensive) E04GBF Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton algorithm using first derivatives (comprehensive) E04GFF Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton algorithm, using first derivatives (easy-to-use) K1b1a3 User provides first and second derivatives E04GFF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using first derivatives (comprehensive) Wewton algorithm, using first derivatives (comprehensive) Wewton algorithm, using first derivatives (comprehensive) Wewton algorithm, using second derivatives (comprehensive) Wewton algorithm, using second derivatives (com			·
Polynomials		* -	Least-squares curve cubic spline fit (including interpolation)
E02AFF Least-squares polynomial fit, special data points (including interpolation)			Least-squares cubic spline curve fit, automatic knot placement
Klab Multivariate data (surface fitting)	K1a1a2	-	
Multivariate data (surface fitting)			
E02CAF Least-squares surface fit by polynomials, data on lines	W1o1b		
E02DAF Least-squares surface fit, bicubic splines E02DCF Least-squares surface fit by bicubic splines with automatic knot placement, data on rectangular grid E02DDF Least-squares surface fit by bicubic splines with automatic knot placement, scattered data K1a2 Constrained K1a2a Linear constraints E02AGF Least-squares polynomial fit, values and derivatives may be constrained, arbitrary data points K1b Nonlinear least squares K1b1 Unconstrained K1b1a Smooth functions K1b1a User provides Deferment of the constrained K1b1a User provides Deferment of the constrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using function values only (comprehensive) E04GF Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton algorithm using first derivatives (comprehensive) E04GF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using first derivatives (comprehensive) Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton algorithm using first derivatives (casy-to-use) E04GF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using first derivatives (casy-to-use) Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using first derivatives (comprehensive) Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive) Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive) Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm,	Kiaib		(
rectangular grid Least-squares surface fit by bicubic splines with automatic knot placement, scattered data K1a2 Constrained K1a2a Linear constraints E02AGF Least-squares polynomial fit, values and derivatives may be constrained, arbitrary data points K1b Nonlinear least squares K1b1 Unconstrained K1b1a Smooth functions K1b1a1 User provides no derivatives E04FCF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using function values only (comprehensive) K1b1a2 User provides first derivatives E04FVF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using function values only (easy-to-use) K1b1a2 User provides first derivatives E04GBF Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton algorithm using first derivatives (comprehensive) E04GDF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using first derivatives (comprehensive) E04GYF Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton algorithm using first derivatives (easy-to-use) K1b1a3 User provides first and second derivatives E04GFF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using first derivatives (easy-to-use) K1b1a3 User provides first and second derivatives E04HFF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive) Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive) Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive) Newton algorithm, using second derivatives (comprehensive)			
K1a2 Constrained K1a2a Linear constraints E02AGF Least-squares polynomial fit, values and derivatives may be constrained, arbitrary data points K1b Nonlinear least squares K1b1 Unconstrained K1b1a Smooth functions K1b1a1 User provides no derivatives E04FYF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using function values only (comprehensive) K1b1a2 User provides first derivatives E04GFF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using function values only (easy-to-use) K1b1a2 User provides first derivatives E04GFF Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton algorithm using first derivatives (comprehensive) E04GFF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using first derivatives (comprehensive) E04GFF Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton algorithm, using first derivatives (comprehensive) E04GFF Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton algorithm, using first derivatives (comprehensive) K1b1a3 User provides first and second derivatives E04HFF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using first derivatives (casy-to-use) K1b1a3 User provides first and second derivatives E04HFF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive) Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive) Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive)		E02DCF	Least-squares surface fit by bicubic splines with automatic knot placement, data on
K1a2 Constrained K1a2a Constraines E02AGF Least-squares polynomial fit, values and derivatives may be constrained, arbitrary data points K1b Nonlinear least squares K1b1 Unconstrained K1b1a Smooth functions K1b1a1 User provides no derivatives E04FCF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using function values only (comprehensive) E04FYF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using function values only (easy-to-use) K1b1a2 User provides first derivatives E04GFF Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton algorithm using first derivatives (comprehensive) E04GDF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using first derivatives (comprehensive) E04GFF Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton algorithm, using first derivatives (easy-to-use) K1b1a3 User provides first and second derivatives E04HFF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using first derivatives (easy-to-use) Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using first derivatives (easy-to-use) Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive) Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive) Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive) Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive)			
K1a2a Constrained K1a2a Linear constraints E02AGF Least-squares polynomial fit, values and derivatives may be constrained, arbitrary data points K1b Nonlinear least squares K1b1 Unconstrained K1b1a Smooth functions K1b1a1 User provides no derivatives E04FCF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using function values only (comprehensive) E04FYF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using function values only (easy-to-use) K1b1a2 User provides # Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using first derivatives (comprehensive) E04GBF Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton algorithm using first derivatives (comprehensive) E04GF Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton algorithm, using first derivatives (easy-to-use) E04GF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using first derivatives (easy-to-use) K1b1a3 User provides first and second derivatives E04HFF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive) Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive) Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive) Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive)		E02DDF	
K1b2	K102	Constrained	data
K1b Nonlinear least squares polynomial fit, values and derivatives may be constrained, arbitrary data points K1b1 Unconstrained K1b1a Smooth functions K1b1a1 User provides no derivatives E04FCF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using function values only (comprehensive) E04FYF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using function values only (easy-to-use) K1b1a2 User provides first derivatives E04GFF Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton algorithm using first derivatives (comprehensive) E04GFF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using first derivatives (comprehensive) E04GFF Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton algorithm, using first derivatives (easy-to-use) K1b1a3 User provides first and second derivatives E04HFF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using first derivatives (easy-to-use) K1b1a3 User provides first and second derivatives E04HFF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive) E04HFF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive)			S
K1b1 (Vinconstrained Smooth functions K1b1a (Smooth functions K1b1a1 (User provides no derivatives E04FCF (Unconstrained minimum of a sum of squares, combined Gauss—Newton and modified Newton algorithm using function values only (comprehensive) (E04FYF (Unconstrained minimum of a sum of squares, combined Gauss—Newton and modified Newton algorithm using function values only (easy-to-use) K1b1a2 (User provides first derivatives E04GBF (Unconstrained minimum of a sum of squares, combined Gauss—Newton and quasi-Newton algorithm using first derivatives (comprehensive) (E04GDF (Unconstrained minimum of a sum of squares, combined Gauss—Newton and modified Newton algorithm using first derivatives (comprehensive) (Unconstrained minimum of a sum of squares, combined Gauss—Newton and quasi-Newton algorithm, using first derivatives (easy-to-use) (Unconstrained minimum of a sum of squares, combined Gauss—Newton and modified Newton algorithm using first derivatives (easy-to-use) K1b1a3 (User provides first and second derivatives) (Unconstrained minimum of a sum of squares, combined Gauss—Newton and modified Newton algorithm, using second derivatives (comprehensive) (Unconstrained minimum of a sum of squares, combined Gauss—Newton and modified Newton algorithm, using second derivatives (comprehensive) (Unconstrained minimum of a sum of squares, combined Gauss—Newton and modified Newton algorithm, using second derivatives (comprehensive) (Unconstrained minimum of a sum of squares, combined Gauss—Newton and modified Newton algorithm, using second derivatives (comprehensive)	111424		
K1b1a K1b1a1			data points
K1bla Smooth functions K1bla1 User provides no derivatives		_	es
K1b1a1 User provides no derivatives E04FCF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using function values only (comprehensive) E04FYF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using function values only (easy-to-use) K1b1a2 User provides first derivatives E04GBF Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton algorithm using first derivatives (comprehensive) E04GDF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using first derivatives (comprehensive) E04GYF Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton algorithm, using first derivatives (easy-to-use) E04GZF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using first derivatives (easy-to-use) K1b1a3 User provides first and second derivatives E04HEF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive) E04HYF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive) E04HYF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (easy-to-use)			
K1b1a2 User provides first and second derivatives (casy-to-use) K1b1a3 User provides first derivatives E04GFF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using function values only (easy-to-use) K1b1a3 User provides first derivatives E04GBF Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton algorithm using first derivatives (comprehensive) E04GDF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using first derivatives (comprehensive) E04GFF Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton algorithm, using first derivatives (easy-to-use) E04GFF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using first derivatives (easy-to-use) K1b1a3 User provides first and second derivatives E04HEF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive) E04HFF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive) Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive)			
Newton algorithm using function values only (comprehensive) E04FYF Unconstrained minimum of a sum of squares, combined Gauss—Newton and modified Newton algorithm using function values only (easy-to-use) Newton algorithm using function values only (easy-to-use) User provides first derivatives	Kibiai	_	
K1b1a2 User provides first derivatives E04GBF Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi- Newton algorithm using first derivatives (comprehensive) E04GDF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using first derivatives (comprehensive) E04GYF Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi- Newton algorithm, using first derivatives (easy-to-use) E04GZF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using first derivatives (easy-to-use) K1b1a3 User provides first and second derivatives E04HEF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive) E04HYF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive) Vunconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive) Vunconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (easy-to-use)		2011 01	
User provides first derivatives E04GBF Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi- Newton algorithm using first derivatives (comprehensive) E04GDF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using first derivatives (comprehensive) E04GYF Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi- Newton algorithm, using first derivatives (easy-to-use) E04GZF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using first derivatives (easy-to-use) K1b1a3 User provides first and second derivatives E04HEF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive) Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive) Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive)		E04FYF	Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified
E04GBF Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi- Newton algorithm using first derivatives (comprehensive) E04GPF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using first derivatives (comprehensive) E04GYF Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi- Newton algorithm, using first derivatives (easy-to-use) E04GZF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using first derivatives (easy-to-use) K1b1a3 User provides first and second derivatives E04HEF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive) Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (easy-to-use)			
Newton algorithm using first derivatives (comprehensive) Unconstrained minimum of a sum of squares, combined Gauss—Newton and modified Newton algorithm using first derivatives (comprehensive) E04GYF Unconstrained minimum of a sum of squares, combined Gauss—Newton and quasi-Newton algorithm, using first derivatives (easy-to-use) E04GZF Unconstrained minimum of a sum of squares, combined Gauss—Newton and modified Newton algorithm using first derivatives (easy-to-use) Wester provides first and second derivatives E04HEF Unconstrained minimum of a sum of squares, combined Gauss—Newton and modified Newton algorithm, using second derivatives (comprehensive) Unconstrained minimum of a sum of squares, combined Gauss—Newton and modified Newton algorithm, using second derivatives (easy-to-use)	K1b1a2	•	
E04GDF Unconstrained minimum of a sum of squares, combined Gauss—Newton and modified Newton algorithm using first derivatives (comprehensive) E04GYF Unconstrained minimum of a sum of squares, combined Gauss—Newton and quasi-Newton algorithm, using first derivatives (easy-to-use) E04GZF Unconstrained minimum of a sum of squares, combined Gauss—Newton and modified Newton algorithm using first derivatives (easy-to-use) User provides first and second derivatives E04HEF Unconstrained minimum of a sum of squares, combined Gauss—Newton and modified Newton algorithm, using second derivatives (comprehensive) E04HYF Unconstrained minimum of a sum of squares, combined Gauss—Newton and modified Newton algorithm, using second derivatives (easy-to-use)		E04GBF	• '
Newton algorithm using first derivatives (comprehensive) Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton algorithm, using first derivatives (easy-to-use) Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using first derivatives (easy-to-use) User provides first and second derivatives E04HEF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive) E04HYF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (easy-to-use)		E04GDF	,
Newton algorithm, using first derivatives (easy-to-use) Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using first derivatives (easy-to-use) West provides first and second derivatives E04HEF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive) E04HYF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (easy-to-use)			
E04GZF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using first derivatives (easy-to-use) User provides first and second derivatives E04HEF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive) E04HYF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (easy-to-use)		E04GYF	Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-
Newton algorithm using first derivatives (easy-to-use) User provides first and second derivatives E04HEF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive) E04HYF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (easy-to-use)			
User provides first and second derivatives E04HEF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive) E04HYF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (easy-to-use)		E04GZF	
EO4HEF Unconstrained minimum of a sum of squares, combined Gauss—Newton and modified Newton algorithm, using second derivatives (comprehensive) EO4HYF Unconstrained minimum of a sum of squares, combined Gauss—Newton and modified Newton algorithm, using second derivatives (easy-to-use)	K1h1a9	Heer provides	
Newton algorithm, using second derivatives (comprehensive) EO4HYF Unconstrained minimum of a sum of squares, combined Gauss—Newton and modified Newton algorithm, using second derivatives (easy-to-use)	1710199	_	
EO4HYF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (easy-to-use)		20 24422	
		E04HYF	Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified
K1b2 Constrained	****	Q	Newton algorithm, using second derivatives (easy-to-use)
	K1b2	Constrained	

GAMS.24 [NP3445/2/pdf]

T	N. 1.	. ,
K1b2b	Nonlinear constra E04UNF	Minimum of a sum of squares, nonlinear constraints, sequential QP method, using
	20 1011	function values and optionally first derivatives (comprehensive)
K2	Minimax (L_{∞}) approxim	
T. 4	E02ACF	Minimax curve fit by polynomials
K4	Other analytic approxim	ations (e.g., Taylor polynomial, Padé) Padé-approximants
K 6	Service routines for appr	
K6a		nctions, including quadrature
K6a1	Function evaluation	
	E02AEF	Evaluation of fitted polynomial in one variable from Chebyshev series form (simplified parameter list)
	E02AKF	Evaluation of fitted polynomial in one variable from Chebyshev series form
	E02BBF	Evaluation of fitted cubic spline, function only
	E02BCF	Evaluation of fitted cubic spline, function and derivatives
	E02CBF E02RBF	Evaluation of fitted polynomial in two variables Evaluation of fitted rational function as computed by E02RAF
K6a2	Derivative evaluatio	- v
11042	E02AHF	Derivative of fitted polynomial in Chebyshev series form
	E02BCF	Evaluation of fitted cubic spline, function and derivatives
K6a3	Quadrature	Integral of fitted polynomial in Chebyshev series form
	EO2AJF EO2BDF	Evaluation of fitted cubic spline, definite integral
K6d	Other	
	E02ZAF	Sort two-dimensional data into panels for fitting bicubic splines
L	Statistics, probability Data summarization	
L1 L1a	One-dimensional data	
L1a1	Raw data	
	GO1AAF	Mean, variance, skewness, kurtosis, etc, one variable, from raw data
	GO1ALF GO7DAF	Computes a five-point summary (median, hinges and extremes) Robust estimation, median, median absolute deviation, robust standard deviation
	GO7DBF	Robust estimation, M -estimates for location and scale parameters, standard weight
		functions
	G07DCF	Robust estimation, M-estimates for location and scale parameters, user-defined
	GO7DDF	weight functions Computes a trimmed and winsorized mean of a single sample with estimates of their
	GOTDDI	variance
L1a3	Grouped data	
T 1L	GO1ADF	Mean, variance, skewness, kurtosis, etc, one variable, from frequency table (search also class L1c)
L1b	GO1ABF	Mean, variance, skewness, kurtosis, etc, two variables, from raw data
L1c	Multi-dimensional dat	
L1c1	Raw data	
	GO2BDF GO2BKF	Correlation-like coefficients (about zero), all variables, no missing values Correlation-like coefficients (about zero), subset of variables, no missing values
	G11BAF	Computes multiway table from set of classification factors using selected statistic
	G11BBF	Computes multiway table from set of classification factors using given
T = =1	Gi	percentile/quantile
L1c1b	Covariance, correl G02BAF	Pearson product-moment correlation coefficients, all variables, no missing values
	GO2BGF	Pearson product-moment correlation coefficients, subset of variables, no missing
		values
	GO2BNF	Kendall/Spearman non-parametric rank correlation coefficients, no missing values, overwriting input data
	G02BQF	Kendall/Spearman non-parametric rank correlation coefficients, no missing values,
	•	preserving input data
	G02BTF	Update a weighted sum of squares matrix with a new observation
	GO2BUF GO2BWF	Computes a weighted sum of squares matrix Computes a correlation matrix from a sum of squares matrix
	GO2BXF	Computes (optionally weighted) correlation and covariance matrices
	G02BYF	$Computes\ partial\ correlation/variance-covariance\ matrix\ from\ correlation/variance-covariance$
		covariance matrix computed by G02BXF
	GO2HKF GO2HLF	Calculates a robust estimation of a correlation matrix, Huber's weight function Calculates a robust estimation of a correlation matrix, user-supplied weight function
	GOZILF	plus derivatives
	GO2HMF	Calculates a robust estimation of a correlation matrix, user-supplied weight function
L1c2	,	g missing values (search also class L1c1)
	G02BBF	Pearson product-moment correlation coefficients, all variables, casewise treatment of missing values
	G02BCF	Pearson product-moment correlation coefficients, all variables, pairwise treatment
		of missing values

 $[NP3445/2/pdf] \hspace{3cm} GAMS.25$

	G02BEF	Correlation-like coefficients (about zero), all variables, casewise treatment of missing
	G02BFF	values Correlation-like coefficients (about zero), all variables, pairwise treatment of missing
	G02BHF	values Pearson product-moment correlation coefficients, subset of variables, casewise
		treatment of missing values
	G02BJF	Pearson product-moment correlation coefficients, subset of variables, pairwise treatment of missing values
	G02BLF	Correlation-like coefficients (about zero), subset of variables, casewise treatment of missing values
	G02BMF	Correlation-like coefficients (about zero), subset of variables, pairwise treatment of missing values
	G02BPF	Kendall/Spearman non-parametric rank correlation coefficients, casewise treatment of missing values, overwriting input data
	G02BRF	Kendall/Spearman non-parametric rank correlation coefficients, casewise treatment
	G02BSF	of missing values, preserving input data Kendall/Spearman non-parametric rank correlation coefficients, pairwise treatment of missing values
L2	Data manipulation	
L2a	Transform (search a $GO3ZAF$	lso classes L10a1, N6, and N8) Produces standardized values (z-scores) for a data matrix
L2b	Tally	1 Todaess standardized varies (2 sectes) for a data matrix
	GO1AEF	Frequency table from raw data
	G11BAF G11BBF	Computes multiway table from set of classification factors using selected statistic Computes multiway table from set of classification factors using given
		percentile/quantile
	G11BCF G11SBF	Computes marginal tables for multiway table computed by G11BAF or G11BBF Frequency count for G11SAF
L2c	Subset	
	G02CEF	Service routines for multiple linear regression, select elements from vectors and matrices
L3	*	graphics (search also class Q)
L3a L3a1	One-dimensional dat Histograms	a
Loai	G01AJF	Lineprinter histogram of one variable
L3a3	EDA (e.g., box-ple	,
	GO1ARF GO1ASF	Constructs a stem and leaf plot Constructs a box and whisker plot
L3b		ta (search also class L3e)
L3b3	Scatter diagrams	
L3b3a	$Y ext{ vs. } X$	Lineprinter scatterplot of two variables
L4	Elementary data analy	
L4a	One-dimensional dat	a
L4a1	Raw data	
L4a1a L4a1a2	Parametric anal Probability p	·
L4a1a2n	v -	nomial, normal
	GO1AHF	Lineprinter scatterplot of one variable against Normal scores
	GO1DCF GO1DHF	Normal scores, approximate variance-covariance matrix Ranks, Normal scores, approximate Normal scores or exponential (Savage) scores
L4a1a4		imates and tests
L4a1a4b	Binomial	
L4a1a4n	G07AAF Normal	Computes confidence interval for the parameter of a binomial distribution
2 101UTII	G01DDF	Shapiro and Wilk's W test for Normality
	G07BBF	Computes maximum likelihood estimates for parameters of the Normal distribution
	GO7CAF	from grouped and/or censored data Computes t-test statistic for a difference in means between two Normal populations, confidence interval
L4a1a4p	Poisson G07ABF	Computes confidence interval for the parameter of a Poisson distribution
L4a1a4w	Weibull	Computes confidence interval for the parameter of a roisson distribution
	G07BEF	Computes maximum likelihood estimates for parameters of the Weibull distribution
L4a1b	Nonparametric	· ·
L4a1b1	GO7EAF	l tests regarding location (e.g., median), dispersion, and shape Robust confidence intervals, one-sample
	G07EBF	Robust confidence intervals, two-sample
	G08AGF	Performs the Wilcoxon one-sample (matched pairs) signed rank test
	GO8AHF GO8AJF	Performs the Mann–Whitney U test on two independent samples Computes the exact probabilities for the Mann–Whitney U statistic, no ties in
	GOORST	pooled sample

GAMS.26 [NP3445/2/pdf]

	G08AKF	Computes the exact probabilities for the Mann–Whitney U statistic, ties in pooled sample
L4a1b2	Density function	on estimation
L4a1c	G10BAF Goodness-of-fit t	Kernel density estimate using Gaussian kernel
L4aIC	G08CBF	Performs the one-sample Kolmogorov–Smirnov test for standard distributions
	G08CCF	Performs the one-sample Kolmogorov–Smirnov test for a user-supplied distribution
	G08CDF	Performs the two-sample Kolmogorov–Smirnov test
	G08CGF	Performs the χ^2 goodness of fit test, for standard continuous distributions
L4a1d	Analysis of a seq	uence of numbers (search also class L10a)
	G08EAF	Performs the runs up or runs down test for randomness
	G08EBF	Performs the pairs (serial) test for randomness
	G08ECF	Performs the triplets test for randomness
_	G08EDF	Performs the gaps test for randomness
L4a3	Grouped and/or ce	
	G07BBF	Computes maximum likelihood estimates for parameters of the Normal distribution from grouped and/or censored data
	G07BEF	Computes maximum likelihood estimates for parameters of the Weibull distribution
L4a5	Categorical data	Computes maximum intermode estimates for parameters of the welder distribution
L4ao	G11AAF	χ^2 statistics for two-way contingency table
L4b		α (search also class $L4c$)
L4b1	Pairwise independe	. /
L4b1b	-	nalysis (e.g., rank tests)
	G08ACF	Median test on two samples of unequal size
	GO8BAF	Mood's and David's tests on two samples of unequal size
L4b3	Pairwise dependent	data
	GOSAAF	Sign test on two paired samples
$_{ m L4c}$		ta (search also classes L4b and L7a1)
L4c1	Independent data	
L4c1b	Nonparametric a	
TE	GOSDAF Function evaluation (see	Kendall's coefficient of concordance
L5 L5a	Function evaluation (search also class C) Univariate	
L5a1		ution functions, probability density functions
Loui	GO1EMF	Computes probability for the Studentized range statistic
	G01EPF	Computes bounds for the significance of a Durbin–Watson statistic
	G01JDF	Computes lower tail probability for a linear combination of (central) χ^2 variables
L5a1b	Beta, binomial	
	G01BJF	Binomial distribution function
	G01EEF	Computes upper and lower tail probabilities and probability density function for
		the beta distribution
	GO1GEF	Computes probabilities for the non-central beta distribution
L5a1c	Cauchy, χ^2	Character and difficulty for 2 distribution
	G01ECF	Computes probabilities for χ^2 distribution Computes probabilities for the non-central χ^2 distribution
	G01GCF	Computes probabilities for the non-central χ distribution. Computes probability for a positive linear combination of χ^2 variables
TEOLO	G01JCF Error function	computes probability for a positive linear combination of χ variables xponential, extreme value
L5a1e	S15ADF	Complement of error function $\operatorname{erfc}(x)$
	S15AEF	Error function $erf(x)$
L5a1f	F distribution	
	GO1EDF	Computes probabilities for F -distribution
	G01GDF	Computes probabilities for the non-central F -distribution
L5a1g	Gamma, general,	-
	G01EFF	Computes probabilities for the gamma distribution
L5a1h	Halfnormal, hype	
T = -11	G01BLF	Hypergeometric distribution function
L5a1k		cic, Kolmogorov-Smirnov Computes probabilities for the one-sample Kolmogorov-Smirnov distribution
	GO1EYF GO1EZF	Computes probabilities for the one-sample Kolmogorov–Smirnov distribution Computes probabilities for the two-sample Kolmogorov–Smirnov distribution
L5a1n	Negative binomia	
Loain	G01EAF	Computes probabilities for the standard Normal distribution
	GO1MBF	Computes reciprocal of Mills' Ratio
	S15ABF	Cumulative normal distribution function $P(x)$
	S15ACF	Complement of cumulative normal distribution function $Q(x)$
L5a1p	Pareto, Poisson	
	G01BKF	Poisson distribution function
L5a1t	t distribution	
	G01EBF	Computes probabilities for Student's t-distribution
_	G01GBF	Computes probabilities for the non-central Student's t-distribution
L5a1v	Von Mises	
	G01ERF	Computes probability for von Mises distribution

L5a2	Inverse distribution functions, sparsity functions GO1FMF Computes deviates for the Studentized range statistic
L5a2b	Beta, binomial
	G01FEF Computes deviates for the beta distribution
L5a2c	Cauchy, χ^2 G01FCF Computes deviates for the χ^2 distribution
L5a2f	F distribution
T. 0	GO1FDF Computes deviates for the F -distribution
L5a2g	Gamma, general, geometric G01FFF Computes deviates for the gamma distribution
L5a2n	Negative binomial, normal order statistics
	GO1DAF Normal scores, accurate values
	G01DBF Normal scores, approximate values G01FAF Computes deviates for the standard Normal distribution
L5a2t	t distribution
	G01FBF Computes deviates for Student's t-distribution
L5b	Multivariate Converse of manager of manager of production forms in Normal maniphles
	GO1NAF Cumulants and moments of quadratic forms in Normal variables GO1NBF Moments of ratios of quadratic forms in Normal variables, and related statistics
L5b1	Cumulative multivariate distribution functions, probability density functions
L5b1n	Normal
	GO1HAF Computes probability for the bivariate Normal distribution GO1HBF Computes probabilities for the multivariate Normal distribution
L6	GO1HBF Computes probabilities for the multivariate Normal distribution Random number generation
L6a	Univariate
	G05EYF Pseudo-random integer from reference vector
L6a2	Beta, binomial, Boolean G05DZF Pseudo-random logical (boolean) value
	GOSEDF Set up reference vector for generating pseudo-random integers, binomial distribution
	GO5FEF Generates a vector of pseudo-random numbers from a beta distribution
L6a3	Cauchy, χ^2
	GO5DFF Pseudo-random real numbers, Cauchy distribution
L6a5	G05DHF Pseudo-random real numbers, χ^2 distribution Exponential, extreme value
Loas	G05DBF Pseudo-random real numbers, (negative) exponential distribution
	G05FBF Generates a vector of random numbers from an (negative) exponential distribution
L6a6	F distribution G05DKF Pseudo-random real numbers, F -distribution
L6a7	Gamma, general (continuous, discrete), geometric
	GO5EXF Set up reference vector from supplied cumulative distribution function or probability
	distribution function G05FFF Generates a vector of pseudo-random numbers from a gamma distribution
L6a8	Halfnormal, hypergeometric
2000	G05EFF Set up reference vector for generating pseudo-random integers, hypergeometric
	distribution
L6a12	Lambda, logistic, lognormal GO5DCF Pseudo-random real numbers, logistic distribution
	G05DEF Pseudo-random real numbers, log-normal distribution
L6a14	Negative binomial, normal order statistics
	GO5DDF Pseudo-random real numbers, Normal distribution GO5EEF Set up reference vector for generating pseudo-random integers, negative binomia
	distribution
	GO5FDF Generates a vector of random numbers from a Normal distribution
L6a16	Pareto, Pascal, permutations, Poisson
	GO5DRF Pseudo-random integer, Poisson distribution GO5ECF Set up reference vector for generating pseudo-random integers, Poisson distribution
	G05EHF Pseudo-random permutation of an integer vector
L6a19	Samples, stable distribution
I 6-20	G05EJF Pseudo-random sample from an integer vector
L6a20	t distribution, time series, triangular G05DJF Pseudo-random real numbers, Student's t -distribution
	G05EGF Set up reference vector for univariate ARMA time series model
_	GO5EWF Generate next term from reference vector for ARMA time series model
L6a21	Uniform (continuous, discrete), uniform order statistics G05CAF Pseudo-random real numbers, uniform distribution over (0,1)
	GOSDAF Pseudo-random real numbers, uniform distribution over $(0,1)$ GOSDAF Pseudo-random real numbers, uniform distribution over (a,b)
	G05DYF Pseudo-random integer from uniform distribution
	GOSEBF Set up reference vector for generating pseudo-random integers, uniform distribution
I 6522	G05FAF Generates a vector of random numbers from a uniform distribution Von Mises
L6a22	G05FSF Generates a vector of pseudo-random variates from von Mises distribution
	•

GAMS.28 [NP3445/2/pdf]

L6a23	Weibull	
	G05DPF	Pseudo-random real numbers, Weibull distribution
L6b	Multivariate GO5HDF	Generates a realisation of a multivariate time series from a VARMA model
L6b3	Contingency table, G05GBF	correlation matrix Computes random correlation matrix
L6b14	Normal	
	GO5EAF GO5EZF	Set up reference vector for multivariate Normal distribution Pseudo-random multivariate Normal vector from reference vector
L6b15	Orthogonal matrix	
L6c	G05GAF Service routines (e.g.,	Computes random orthogonal matrix , seed)
	G05CBF G05CCF	Initialise random number generating routines to give repeatable sequence Initialise random number generating routines to give non-repeatable sequence
	G05CFF	Save state of random number generating routines
	GO5CGF GO5ZAF	Restore state of random number generating routines Selection of basic algorithm random number generator or Wichmann–Hill algorithm
T =		generators for subsequent calls to G05 routines
L7 L7a	One-way	cluding analysis of covariance)
L7a1	Parametric	Analysis of mainers and desired block on completely and animal desires to other
	G04BBF	Analysis of variance, randomized block or completely randomized design, treatment means and standard errors
	GO4DAF GO4DBF	Computes sum of squares for contrast between means Computes confidence intervals for differences between means computed by G04BBF
		or G04BCF
L7a2	Nonparametric G08AFF	Kruskal–Wallis one-way analysis of variance on k samples of unequal size
L7b	Two-way (search also	· · · · · · · · · · · · · · · · · · ·
	GO4AGF GO4BBF	Two-way analysis of variance, hierarchical classification, subgroups of unequal size Analysis of variance, randomized block or completely randomized design, treatment
	G08AEF	means and standard errors Friedman two-way analysis of variance on k matched samples
	G08ALF	Performs the Cochran Q test on cross-classified binary data
L7c	Three-way (e.g., Lating G04BCF	n squares) (search also class L7d) Analysis of variance, general row and column design, treatment means and standard
T = 1		errors
$egin{array}{c} { m L7d} \\ { m L7d1} \end{array}$	Multi-way Balanced complete	data (e.g., factorial designs)
L7d2	G04CAF Balanced incomple	Analysis of variance, complete factorial design, treatment means and standard errors te data
	F04JLF	Real general Gauss–Markov linear model (including weighted least-squares)
L7f	Generate experiments G02DAF	al designs Fits a general (multiple) linear regression model
	G02DNF	Computes estimable function of a general linear regression model and its standard
L7g	Service routines	error
	GO4EAF	Computes orthogonal polynomials or dummy variables for factor/classification variable
L8	,	classes $D5$, $D6$, $D9$, G , K)
L8a L8a1	Simple linear (i.e., $y = 0$) Ordinary least square	$=b_0+b_1x$) (search also class $L8h$)
L8a1a	Parameter estima	
L8a1a1	Unweighted da	
	GO2CAF GO2CBF	Simple linear regression with constant term, no missing values Simple linear regression without constant term, no missing values
	G02CCF	Simple linear regression with constant term, missing values
T 0 - 0	GO2CDF	Simple linear regression without constant term, missing values rom 2 (e.g., least absolute value, minimax)
L8a2	L_p for p different in E02GAF	L_1 -approximation by general linear function
L8b	E02GCF	L_{∞} -approximation by general linear function $b_0 + b_1 x + b_2 x^2$) (search also class L8c)
L8b1	Ordinary least squa	
L8b1b	Parameter estim	
L8b1b2	Using orthogor E02ADF	nal polynomials Least-squares curve fit, by polynomials, arbitrary data points
L8c		$y = b_0 + b_1 x_1 + + b_p x_p)$
	F04JLF	Real general Gauss–Markov linear model (including weighted least-squares)
L8c1	F04JMF Ordinary least squa	Equality-constrained real linear least-squares problem ares
L8c1a	Variable selection	n
	G02ECF	Calculates \mathbb{R}^2 and \mathbb{C}_P values from residual sums of squares

L8c1a1	Using raw data G02DDF	Estimates of linear parameters and general linear regression model from updated
	GOZDDF	model
	G02DEF	Add a new variable to a general linear regression model
	G02DFF	Delete a variable from a general linear regression model
	G02EAF	Computes residual sums of squares for all possible linear regressions for a set of
	GO2EEF	independent variables Fits a linear regression model by forward selection
L8c1b		ation (search also class L8c1a)
L8c1b1	Using raw data	
	GO2DAF	Fits a general (multiple) linear regression model
	GO2DCF GO2DDF	Add/delete an observation to/from a general linear regression model Estimates of linear parameters and general linear regression model from updated
	GOZDDF	model
	G02DEF	Add a new variable to a general linear regression model
	G02DFF	Delete a variable from a general linear regression model
	G02DKF	Estimates and standard errors of parameters of a general linear regression model
	GO2DNF	for given constraints Computes estimable function of a general linear regression model and its standard
		error
L8c1b2	Using correlati	
	GO2CGF GO2CHF	Multiple linear regression, from correlation coefficients, with constant term Multiple linear regression, from correlation-like coefficients, without constant term
L8c1c		also classes L8c1a and L8c1b)
Locic	GO2FAF	Calculates standardized residuals and influence statistics
L8c1d	,	also classes L8c1a and L8c1b)
	GO2DNF	Computes estimable function of a general linear regression model and its standard
	G02FCF	error Computes Durbin–Watson test statistic
L8c2	Several regressions	
	G02DGF	Fits a general linear regression model for new dependent variable
L8c4	Robust	Debugt remarries standard Mastimates
	GO2HAF GO2HBF	Robust regression, standard M-estimates Robust regression, compute weights for use with G02HDF
	GO2HDF	Robust regression, compute regression with user-supplied functions and weights
	G02HFF	Robust regression, variance-covariance matrix following G02HDF
L8c6	Models based on ra	
	GO8RAF GO8RBF	Regression using ranks, uncensored data Regression using ranks, right-censored data
L8e		(X,b)) (search also class L8h)
	G02GBF	Fits a generalized linear model with binomial errors
	G02GCF	Fits a generalized linear model with Poisson errors
	GO2GDF GO2GKF	Fits a generalized linear model with gamma errors Estimates and standard errors of parameters of a general linear model for given
	4024	constraints
	GO2GNF	Computes estimable function of a generalized linear model and its standard error
L8e1	Ordinary least squa	
L8e1b	Parameter estima E04YCF	ation (search also class L8e1a) Covariance matrix for nonlinear least-squares problem (unconstrained)
	GO2GAF	Fits a generalized linear model with Normal errors
L8e1b1		ta, user provides no derivatives
	E04FCF	Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified
	E04FYF	Newton algorithm using function values only (comprehensive) Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified
	LO4I II	Newton algorithm using function values only (easy-to-use)
	E04UNF	Minimum of a sum of squares, nonlinear constraints, sequential QP method, using
T 0 11 0	II	function values and optionally first derivatives (comprehensive)
L8e1b2	Unweighted da E04GBF	ta, user provides derivatives Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-
	20 1021	Newton algorithm using first derivatives (comprehensive)
	E04GDF	Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified
	E04GYF	Newton algorithm using first derivatives (comprehensive) Unconstrained minimum of a sum of squares, combined Gauss–Newton and quasi-
	EU4G1f	Newton algorithm, using first derivatives (easy-to-use)
	E04GZF	Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified
		Newton algorithm using first derivatives (easy-to-use)
	E04UNF	Minimum of a sum of squares, nonlinear constraints, sequential QP method, using function values and optionally first derivatives (comprehensive)
L8g	Spline (i.e., piecewise	
J	E02BAF	Least-squares curve cubic spline fit (including interpolation)
	E02BEF	Least-squares cubic spline curve fit, automatic knot placement
	G10ABF	Fit cubic smoothing spline, smoothing parameter given

GAMS.30 [NP3445/2/pdf]

T.O.	G10ACF	Fit cubic smoothing spline, smoothing parameter estimated
L8h	EDA (e.g., smoothing G10CAF	Compute smoothed data sequence using running median smoothers
L8i	Service routines (e.g. G02CEF	, matrix manipulation for variable selection) Service routines for multiple linear regression, select elements from vectors and matrices
	G02CFF	Service routines for multiple linear regression, re-order elements of vectors and matrices
	GO4EAF	Computes orthogonal polynomials or dummy variables for factor/classification variable
T.0	G10ZAF	Reorder data to give ordered distinct observations
L9	Categorical data analys G11BAF	Computes multiway table from set of classification factors using selected statistic
	G11BBF	Computes multiway table from set of classification factors using given percentile/quantile
	G11BCF	Computes marginal tables for multiway table computed by G11BAF or G11BBF
	G11CAF	Returns parameter estimates for the conditional analysis of stratified data
T 0.1	G12ZAF	Creates the risk sets associated with the Cox proportional hazards model for fixed covariates
L9b	Two-way tables (sear G01AFF	Two-way contingency table analysis, with χ^2 /Fisher's exact test
	G11AAF	χ^2 statistics for two-way contingency table
L9c	Log-linear model	a statistics for two may contained tubic
	GO2GCF GO2GKF	Fits a generalized linear model with Poisson errors Estimates and standard errors of parameters of a general linear model for given
		constraints
	GO2GNF	Computes estimable function of a generalized linear model and its standard error
L10	Time series analysis (se	·
L10a L10a1	Transformations	so classes $L3a6$ and $L3a7$)
L10a1 L10a1c	Filters (search a	lso class K5)
L10a1c1	Difference	,
	G13AAF	Univariate time series, seasonal and non-seasonal differencing
L10a1c4	Other G13BBF	Multivariate time series, filtering by a transfer function model
L10a2	Time domain analy	
L10a2a	Summary statist	
T 10 0 1	G13AUF	Computes quantities needed for range-mean or standard deviation-mean plot ons and autocovariances
L10a2a1	G13ABF	Univariate time series, sample autocorrelation function
L10a2a2	Partial autoco G13ACF	
L10a2b		Univariate time series, partial autocorrelations from autocorrelations lysis (search also class L10a2a)
L10a2b	G13AUF	Computes quantities needed for range-mean or standard deviation-mean plot
L10a2c	Autoregressive m	nodels
L10a2c1	Model identifie	
T 10 0 1	G13ACF	Univariate time series, partial autocorrelations from autocorrelations
m L10a2d $ m L10a2d1$	Model identific	MA models (including Box–Jenkins methods)
2100201	G13ADF	Univariate time series, preliminary estimation, seasonal ARIMA model
L10a2d2	Parameter esti	mation
	G13AEF	Univariate time series, estimation, seasonal ARIMA model (comprehensive)
	G13AFF G13ASF	Univariate time series, estimation, seasonal ARIMA model (easy-to-use) Univariate time series, diagnostic checking of residuals, following G13AEF or
	GISAST	G13AFF
	G13BEF	Multivariate time series, estimation of multi-input model
L10a2d3	Forecasting G13AGF	University time series undete state set for forecasting
	G13AHF	Univariate time series, update state set for forecasting Univariate time series, forecasting from state set
	G13AJF	Univariate time series, state set and forecasts, from fully specified seasonal ARIMA
	~ .	model
L10a2e	- '	ysis (e.g., Kalman filtering)
	G13EAF	Combined measurement and time update, one iteration of Kalman filter, time- varying, square root covariance filter
	G13EBF	Combined measurement and time update, one iteration of Kalman filter, time-
		invariant, square root covariance filter
L10a2f	-	ally stationary series
	G13DXF	Calculates the zeros of a vector autoregressive (or moving average) operator

L10a3	- "	analysis (search also class J1)
L10a3a L10a3a3	Spectral analysis Spectrum esti	mation using the periodogram
LIUdodo	G13CBF	Univariate time series, smoothed sample spectrum using spectral smoothing by the
		trapezium frequency (Daniell) window
L10a3a4	_	mation using the Fourier transform of the autocorrelation function
	G13CAF	Univariate time series, smoothed sample spectrum using rectangular, Bartlett,
L10b	Two time series (sear	Tukey or Parzen lag window rch also classes L3b3c, L10c, and L10d)
L10b L10b2	Time domain analy	,
L10b2a	•	ics (e.g., cross-correlations)
	G13BCF	Multivariate time series, cross-correlations
L10b2b	Transfer function	
	G13BAF	Multivariate time series, filtering (pre-whitening) by an ARIMA model
	G13BDF G13BEF	Multivariate time series, preliminary estimation of transfer function model Multivariate time series, estimation of multi-input model
	G13BGF	Multivariate time series, estimation of multi-input model Multivariate time series, update state set for forecasting from multi-input model
	G13BHF	Multivariate time series, forecasting from state set of multi-input model
	G13BJF	Multivariate time series, state set and forecasts from fully specified multi-input
		model
L10b3		analysis (search also class J1)
L10b3a L10b3a3	Cross-spectral ar	naiysis n estimation using the cross-periodogram
LIUDJaj	G13CDF	Multivariate time series, smoothed sample cross spectrum using spectral smoothing
		by the trapezium frequency (Daniell) window
L10b3a4	_	m estimation using the Fourier transform of the cross-correlation or cross-covariance
	function G13CCF	Multivariate time series, smoothed sample cross spectrum using rectangular,
		Bartlett, Tukey or Parzen lag window
L10b3a6	Spectral funct	
	G13CEF	Multivariate time series, cross amplitude spectrum, squared coherency, bounds,
	G13CFF	univariate and bivariate (cross) spectra Multivariate time series, gain, phase, bounds, univariate and bivariate (cross)
	410011	spectra
	G13CGF	Multivariate time series, noise spectrum, bounds, impulse response function and its
_	3.6.3.4	standard error
L10c	Multivariate time ser G13DBF	ies (search also classes J1, L3e3 and L10b) Multivariate time series, multiple squared partial autocorrelations
	G13DCF	Multivariate time series, multiple squared partial autocorrelations Multivariate time series, estimation of VARMA model
	G13DJF	Multivariate time series, forecasts and their standard errors
	G13DKF	Multivariate time series, updates forecasts and their standard errors
	G13DLF	Multivariate time series, differences and/or transforms (for use before G13DCF)
	G13DMF	Multivariate time series, sample cross-correlation or cross-covariance matrices
	G13DNF	Multivariate time series, sample partial lag correlation matrices, χ^2 statistics and significance levels
	G13DPF	Multivariate time series, partial autoregression matrices
	G13DSF	Multivariate time series, diagnostic checking of residuals, following G13DCF
	G13DXF	Calculates the zeros of a vector autoregressive (or moving average) operator
L12	Discriminant analysis	
	GO3ACF GO3DAF	Performs canonical variate analysis Computes test statistic for equality of within-group covariance matrices and
	GOSDAF	matrices for discriminant analysis
	GO3DBF	Computes Mahalanobis squared distances for group or pooled variance-covariance
		matrices (for use after G03DAF)
_	GO3DCF	Allocates observations to groups according to selected rules (for use after G03DAF)
L13	Covariance structure m	odels
L13a	Factor analysis GO3BAF	Computes orthogonal rotations for loading matrix, generalized orthomax criterion
	GO3BCF	Computes Procrustes rotations
	GO3CAF	Computes maximum likelihood estimates of the parameters of a factor analysis
		model, factor loadings, communalities and residual correlations
	G03CCF	Computes factor score coefficients (for use after G03CAF)
L13b	G11SAF Principal components	Contingency table, latent variable model for binary data
L130	GO3AAF	Performs principal component analysis
L13c	Canonical correlation	
	GOSACF	Performs canonical variate analysis
T 4 4	GOSADF	Performs canonical correlation analysis
L14	Cluster analysis One-way	
L14a L14a1	Unconstrained	
211111	2 2 01 011100	

GAMS.32 [NP3445/2/pdf]

L14a1a	Nested	
L14a1a L14a1a1	Joining (e.g., s	single link)
Litaiai	GO3ECF	Hierarchical cluster analysis
	GO3EHF	Constructs dendrogram (for use after G03ECF)
	G03EJF	Computes cluster indicator variable (for use after G03ECF)
L14a1b	Non-nested (e.g.,	
T 1 4 1	GO3EFF	K-means cluster analysis
L14d	GO3EAF	compute distance matrix) Computes distance matrix
L15	Life testing, survival an	Ÿ
	G11CAF G12AAF	Returns parameter estimates for the conditional analysis of stratified data Computes Kaplan–Meier (product-limit) estimates of survival probabilities
T - 0	G12BAF	Fits Cox's proportional hazard model
L16	Multidimensional scalin GO3FAF	Performs principal co-ordinate analysis, classical metric scaling
	GOSFCF	Performs non-metric (ordinal) multidimensional scaling
\mathbf{M}		delling (search also classes L6 and L10)
N	Data handling (search als	
N1	Input, output	
	XO4ACF	Open unit number for reading, writing or appending, and associate unit with named file
	XO4ADF	Close file associated with given unit number
	XO4BAF	Write formatted record to external file
	X04BBF	Read formatted record from external file
	XO4CAF XO4CBF	Print real general matrix (easy-to-use) Print real general matrix (comprehensive)
	X04CCF	Print real packed triangular matrix (easy-to-use)
	X04CDF	Print real packed triangular matrix (comprehensive)
	X04CEF	Print real packed banded matrix (easy-to-use)
	X04CFF	Print real packed banded matrix (comprehensive)
	XO4DAF	Print complex general matrix (easy-to-use)
	XO4DBF	Print complex general matrix (comprehensive)
	X04DCF	Print complex packed triangular matrix (easy-to-use)
	XO4DDF XO4DEF	Print complex packed triangular matrix (comprehensive) Print complex packed banded matrix (easy-to-use)
	X04DEF X04DFF	Print complex packed banded matrix (easy-to-use) Print complex packed banded matrix (comprehensive)
	XO4EAF	Print integer matrix (easy-to-use)
	XO4EBF	Print integer matrix (comprehensive)
N4	Storage management (e	
	F06EUF	(SGTHR/DGTHR) Gather real sparse vector
	F06EVF	(SGTHRZ/DGTHRZ) Gather and set to zero real sparse vector
	F06EWF F06GUF	(SSCTR/DSCTR) Scatter real sparse vector (CGTHR/ZGTHR) Gather complex sparse vector
	F06GVF	(CGTHRZ/ZGTHRZ) Gather and set to zero complex sparse vector
	F06GWF	(CSCTR/ZSCTR) Scatter complex sparse vector
N5	Searching	
N5a	Extreme value	
	F06FLF	Elements of real vector with largest and smallest absolute value
	F06JLF	(ISAMAX/IDAMAX) Index, real vector element with largest absolute value
	F06JMF F06KLF	(ICAMAX/IZAMAX) Index, complex vector element with largest absolute value Last non-negligible element of real vector
N6	Sorting	Last non-negligible element of real vector
N6a	Internal	
N6a1	Passive (i.e., constr	ruct pointer array, rank)
	MO1DZF	Rank arbitrary data
N6a1a	Integer	Dank a wasten interna numbera
	MO1DBF MO1DFF	Rank a vector, integer numbers Rank rows of a matrix, integer numbers
	MO1DKF	Rank columns of a matrix, integer numbers
N6a1b	Real	, , , , , , , , , , , , , , , , , , , ,
	GO1DHF	Ranks, Normal scores, approximate Normal scores or exponential (Savage) scores
	MO1DAF	Rank a vector, real numbers
	MO1DEF	Rank rows of a matrix, real numbers
NIG 1	MO1DJF	Rank columns of a matrix, real numbers
N6a1c	Character M01DCF	Rank a vector, character data
N6a2	Active	Towns a record, character data
N6a2a	Integer	
-	MO1CBF	Sort a vector, integer numbers
N6a2b	Real	
	MO1CAF	Sort a vector, real numbers

N6a2c	Character	
	MO1CCF	Sort a vector, character data
N8	Permuting	
	F06QJF	Permute rows or columns, real rectangular matrix, permutations represented by an integer array
	F06QKF	
	F06VJF	v
	F06VKF	
	MO1EAF	· ·
	MO1EBF	
	MO1ECE	
	MO1EDF	
	MO1ZAF	
	MO1ZBF	1
	MO1ZCF	· -
Р		ry (search also classes G and Q)
•	DO3MAF	-/
\mathbf{Q}	Graphics (search also	
••	GO1ARF	,
	G01ASF	
\mathbf{R}	Service routines	
	AOOAAF	Prints details of the NAG Fortran Library implementation
	XO5AAF	Return date and time as an array of integers
	X05ABF	Convert array of integers representing date and time to character string
	XO5ACE	Compare two character strings representing date and time
	X05BAF	Return the CPU time
$\mathbf{R}1$	Machine-dependent	constants
	XO1AAF	Provides the mathematical constant π
	XO1ABF	Provides the mathematical constant γ (Euler's Constant)
	XO2AHF	The largest permissible argument for sin and cos
	XO2AJF	The machine precision
	XO2AKF	
	XO2ALF	
	XO2AMF	0 1
	XO2ANF	0.1
	X02BBF	
	X02BEF	0 1
	X02BHF	ST. T. T
	X02BJF	01 1 /1
	XO2BKF	01 1
	XO2BLF	01 1
	XO2DAF	01
D 0	X02DJF	The floating-point model parameter ROUNDS
R3	Error handling	
R3b	Set unit number f	
	XO4AAF	8
De	XO4ABF	Return or set unit number for advisory messages
R3c	Other utilities P01ABF	Return value of error indicator/terminate with error message

References

- [1] Boisvert R F, Howe S E and Kahaner D K (1990) The guide to available mathematical software problem classification scheme. *Report NISTIR 4475* Applied and Computational Mathematics Division, National Institute of Standards and Technology.
- [2] Boisvert R F, Howe S E and Kahaner D K (1985) GAMS a framework for the management of scientific software. *ACM Trans. Math. Software* 11 313–355.
- [3] Boisvert R F (1989) The guide to available mathematical software advisory system. Math. Comput. Simul. $\bf 31$ 453–464.

GAMS.34 (last) [NP3445/2/pdf]